Factorization algebras in quantum field theory, Volume 1:
Factorization algebras are local-to-global objects that play a role in classical and quantum field theory which is similar to the role of sheaves in geometry: they conveniently organize complicated information. Their local structure encompasses examples like associative and vertex algebras; in these...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2017
|
Schriftenreihe: | New mathematical monographs
31 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | Factorization algebras are local-to-global objects that play a role in classical and quantum field theory which is similar to the role of sheaves in geometry: they conveniently organize complicated information. Their local structure encompasses examples like associative and vertex algebras; in these examples, their global structure encompasses Hochschild homology and conformal blocks. In this first volume, the authors develop the theory of factorization algebras in depth, but with a focus upon examples exhibiting their use in field theory, such as the recovery of a vertex algebra from a chiral conformal field theory and a quantum group from Abelian Chern-Simons theory. Expositions of the relevant background in homological algebra, sheaves and functional analysis are also included, thus making this book ideal for researchers and graduates working at the interface between mathematics and physics |
Beschreibung: | Title from publisher's bibliographic system (viewed on 31 Jan 2017) From Gaussian measures to factorization algebras -- Prefactorization algebras and basic examples -- Free field theories -- Holomorphic field theories and vertex algebras -- Factorization algebras: definitions and constructions -- Formal aspects of factorization algebras -- Factorization algebras: examples |
Beschreibung: | 1 online resource (ix, 387 pages) |
ISBN: | 9781316678626 |
DOI: | 10.1017/9781316678626 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV044044484 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 170215s2017 |||| o||u| ||||||eng d | ||
020 | |a 9781316678626 |c Online |9 978-1-316-67862-6 | ||
024 | 7 | |a 10.1017/9781316678626 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781316678626 | ||
035 | |a (OCoLC)973567058 | ||
035 | |a (DE-599)BVBBV044044484 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 530.14/30151272 | |
084 | |a UO 4000 |0 (DE-625)146237: |2 rvk | ||
100 | 1 | |a Costello, Kevin |d 1977- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Factorization algebras in quantum field theory, Volume 1 |c Kevin Costello, Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Owen Gwilliam, Max Planck Institute for Mathematics, Bonn |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2017 | |
300 | |a 1 online resource (ix, 387 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a New mathematical monographs |v 31 | |
500 | |a Title from publisher's bibliographic system (viewed on 31 Jan 2017) | ||
500 | |a From Gaussian measures to factorization algebras -- Prefactorization algebras and basic examples -- Free field theories -- Holomorphic field theories and vertex algebras -- Factorization algebras: definitions and constructions -- Formal aspects of factorization algebras -- Factorization algebras: examples | ||
520 | |a Factorization algebras are local-to-global objects that play a role in classical and quantum field theory which is similar to the role of sheaves in geometry: they conveniently organize complicated information. Their local structure encompasses examples like associative and vertex algebras; in these examples, their global structure encompasses Hochschild homology and conformal blocks. In this first volume, the authors develop the theory of factorization algebras in depth, but with a focus upon examples exhibiting their use in field theory, such as the recovery of a vertex algebra from a chiral conformal field theory and a quantum group from Abelian Chern-Simons theory. Expositions of the relevant background in homological algebra, sheaves and functional analysis are also included, thus making this book ideal for researchers and graduates working at the interface between mathematics and physics | ||
650 | 4 | |a Mathematik | |
650 | 4 | |a Quantum field theory / Mathematics | |
650 | 4 | |a Factorization (Mathematics) | |
650 | 4 | |a Factors (Algebra) | |
650 | 4 | |a Geometric quantization | |
650 | 4 | |a Noncommutative algebras | |
700 | 1 | |a Gwilliam, Owen |e Verfasser |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-1-107-16310-2 |
856 | 4 | 0 | |u https://doi.org/10.1017/9781316678626 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029451458 | ||
966 | e | |u https://doi.org/10.1017/9781316678626 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781316678626 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804177057457897472 |
---|---|
any_adam_object | |
author | Costello, Kevin 1977- Gwilliam, Owen |
author_facet | Costello, Kevin 1977- Gwilliam, Owen |
author_role | aut aut |
author_sort | Costello, Kevin 1977- |
author_variant | k c kc o g og |
building | Verbundindex |
bvnumber | BV044044484 |
classification_rvk | UO 4000 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781316678626 (OCoLC)973567058 (DE-599)BVBBV044044484 |
dewey-full | 530.14/30151272 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.14/30151272 |
dewey-search | 530.14/30151272 |
dewey-sort | 3530.14 830151272 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1017/9781316678626 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03141nmm a2200493zcb4500</leader><controlfield tag="001">BV044044484</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">170215s2017 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781316678626</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-316-67862-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781316678626</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781316678626</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)973567058</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044044484</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.14/30151272</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UO 4000</subfield><subfield code="0">(DE-625)146237:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Costello, Kevin</subfield><subfield code="d">1977-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Factorization algebras in quantum field theory, Volume 1</subfield><subfield code="c">Kevin Costello, Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Owen Gwilliam, Max Planck Institute for Mathematics, Bonn</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (ix, 387 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">New mathematical monographs</subfield><subfield code="v">31</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 31 Jan 2017)</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">From Gaussian measures to factorization algebras -- Prefactorization algebras and basic examples -- Free field theories -- Holomorphic field theories and vertex algebras -- Factorization algebras: definitions and constructions -- Formal aspects of factorization algebras -- Factorization algebras: examples</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Factorization algebras are local-to-global objects that play a role in classical and quantum field theory which is similar to the role of sheaves in geometry: they conveniently organize complicated information. Their local structure encompasses examples like associative and vertex algebras; in these examples, their global structure encompasses Hochschild homology and conformal blocks. In this first volume, the authors develop the theory of factorization algebras in depth, but with a focus upon examples exhibiting their use in field theory, such as the recovery of a vertex algebra from a chiral conformal field theory and a quantum group from Abelian Chern-Simons theory. Expositions of the relevant background in homological algebra, sheaves and functional analysis are also included, thus making this book ideal for researchers and graduates working at the interface between mathematics and physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum field theory / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Factorization (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Factors (Algebra)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometric quantization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Noncommutative algebras</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gwilliam, Owen</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-1-107-16310-2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781316678626</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029451458</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781316678626</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781316678626</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044044484 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:42:01Z |
institution | BVB |
isbn | 9781316678626 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029451458 |
oclc_num | 973567058 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (ix, 387 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | Cambridge University Press |
record_format | marc |
series2 | New mathematical monographs |
spelling | Costello, Kevin 1977- Verfasser aut Factorization algebras in quantum field theory, Volume 1 Kevin Costello, Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Owen Gwilliam, Max Planck Institute for Mathematics, Bonn Cambridge Cambridge University Press 2017 1 online resource (ix, 387 pages) txt rdacontent c rdamedia cr rdacarrier New mathematical monographs 31 Title from publisher's bibliographic system (viewed on 31 Jan 2017) From Gaussian measures to factorization algebras -- Prefactorization algebras and basic examples -- Free field theories -- Holomorphic field theories and vertex algebras -- Factorization algebras: definitions and constructions -- Formal aspects of factorization algebras -- Factorization algebras: examples Factorization algebras are local-to-global objects that play a role in classical and quantum field theory which is similar to the role of sheaves in geometry: they conveniently organize complicated information. Their local structure encompasses examples like associative and vertex algebras; in these examples, their global structure encompasses Hochschild homology and conformal blocks. In this first volume, the authors develop the theory of factorization algebras in depth, but with a focus upon examples exhibiting their use in field theory, such as the recovery of a vertex algebra from a chiral conformal field theory and a quantum group from Abelian Chern-Simons theory. Expositions of the relevant background in homological algebra, sheaves and functional analysis are also included, thus making this book ideal for researchers and graduates working at the interface between mathematics and physics Mathematik Quantum field theory / Mathematics Factorization (Mathematics) Factors (Algebra) Geometric quantization Noncommutative algebras Gwilliam, Owen Verfasser aut Erscheint auch als Druckausgabe 978-1-107-16310-2 https://doi.org/10.1017/9781316678626 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Costello, Kevin 1977- Gwilliam, Owen Factorization algebras in quantum field theory, Volume 1 Mathematik Quantum field theory / Mathematics Factorization (Mathematics) Factors (Algebra) Geometric quantization Noncommutative algebras |
title | Factorization algebras in quantum field theory, Volume 1 |
title_auth | Factorization algebras in quantum field theory, Volume 1 |
title_exact_search | Factorization algebras in quantum field theory, Volume 1 |
title_full | Factorization algebras in quantum field theory, Volume 1 Kevin Costello, Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Owen Gwilliam, Max Planck Institute for Mathematics, Bonn |
title_fullStr | Factorization algebras in quantum field theory, Volume 1 Kevin Costello, Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Owen Gwilliam, Max Planck Institute for Mathematics, Bonn |
title_full_unstemmed | Factorization algebras in quantum field theory, Volume 1 Kevin Costello, Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Owen Gwilliam, Max Planck Institute for Mathematics, Bonn |
title_short | Factorization algebras in quantum field theory, Volume 1 |
title_sort | factorization algebras in quantum field theory volume 1 |
topic | Mathematik Quantum field theory / Mathematics Factorization (Mathematics) Factors (Algebra) Geometric quantization Noncommutative algebras |
topic_facet | Mathematik Quantum field theory / Mathematics Factorization (Mathematics) Factors (Algebra) Geometric quantization Noncommutative algebras |
url | https://doi.org/10.1017/9781316678626 |
work_keys_str_mv | AT costellokevin factorizationalgebrasinquantumfieldtheoryvolume1 AT gwilliamowen factorizationalgebrasinquantumfieldtheoryvolume1 |