Fractals in probability and analysis:
This is a mathematically rigorous introduction to fractals which emphasizes examples and fundamental ideas. Building up from basic techniques of geometric measure theory and probability, central topics such as Hausdorff dimension, self-similar sets and Brownian motion are introduced, as are more spe...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2017
|
Schriftenreihe: | Cambridge studies in advanced mathematics
162 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBR01 Volltext |
Zusammenfassung: | This is a mathematically rigorous introduction to fractals which emphasizes examples and fundamental ideas. Building up from basic techniques of geometric measure theory and probability, central topics such as Hausdorff dimension, self-similar sets and Brownian motion are introduced, as are more specialized topics, including Kakeya sets, capacity, percolation on trees and the traveling salesman theorem. The broad range of techniques presented enables key ideas to be highlighted, without the distraction of excessive technicalities. The authors incorporate some novel proofs which are simpler than those available elsewhere. Where possible, chapters are designed to be read independently so the book can be used to teach a variety of courses, with the clear structure offering students an accessible route into the topic |
Beschreibung: | 1 online resource (ix, 402 Seiten) |
ISBN: | 9781316460238 |
DOI: | 10.1017/9781316460238 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV044042772 | ||
003 | DE-604 | ||
005 | 20210316 | ||
007 | cr|uuu---uuuuu | ||
008 | 170214s2017 |||| o||u| ||||||eng d | ||
020 | |a 9781316460238 |c Online |9 978-1-316-46023-8 | ||
024 | 7 | |a 10.1017/9781316460238 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781316460238 | ||
035 | |a (OCoLC)973566667 | ||
035 | |a (DE-599)BVBBV044042772 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-355 |a DE-83 | ||
082 | 0 | |a 514/.742 | |
084 | |a SK 810 |0 (DE-625)143257: |2 rvk | ||
084 | |a SK 430 |0 (DE-625)143239: |2 rvk | ||
100 | 1 | |a Bishop, Christopher J. |e Verfasser |0 (DE-588)1122745281 |4 aut | |
245 | 1 | 0 | |a Fractals in probability and analysis |c Christopher J. Bishop, Stony Brook University, Stony Brook, NY, Yuval Peres, Microsoft Research, Redmond, WA. |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2017 | |
300 | |a 1 online resource (ix, 402 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Cambridge studies in advanced mathematics |v 162 | |
520 | |a This is a mathematically rigorous introduction to fractals which emphasizes examples and fundamental ideas. Building up from basic techniques of geometric measure theory and probability, central topics such as Hausdorff dimension, self-similar sets and Brownian motion are introduced, as are more specialized topics, including Kakeya sets, capacity, percolation on trees and the traveling salesman theorem. The broad range of techniques presented enables key ideas to be highlighted, without the distraction of excessive technicalities. The authors incorporate some novel proofs which are simpler than those available elsewhere. Where possible, chapters are designed to be read independently so the book can be used to teach a variety of courses, with the clear structure offering students an accessible route into the topic | ||
650 | 4 | |a Fractal analysis / Problems, exercises, etc | |
650 | 4 | |a Geometric analysis / Problems, exercises, etc | |
650 | 4 | |a Probability measures / Problems, exercises, etc | |
650 | 0 | 7 | |a Wahrscheinlichkeitsmaß |0 (DE-588)4137556-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Fraktal |0 (DE-588)4123220-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Fraktal |0 (DE-588)4123220-3 |D s |
689 | 0 | 1 | |a Wahrscheinlichkeitsmaß |0 (DE-588)4137556-7 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Peres, Yuval |e Verfasser |0 (DE-588)121404420 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-107-13411-9 |
830 | 0 | |a Cambridge studies in advanced mathematics |v 162 |w (DE-604)BV044781283 |9 162 | |
856 | 4 | 0 | |u https://doi.org/10.1017/9781316460238 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029449780 | ||
966 | e | |u https://doi.org/10.1017/9781316460238 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781316460238 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781316460238 |l UBR01 |p ZDB-20-CBO |q UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804177054451630080 |
---|---|
any_adam_object | |
author | Bishop, Christopher J. Peres, Yuval |
author_GND | (DE-588)1122745281 (DE-588)121404420 |
author_facet | Bishop, Christopher J. Peres, Yuval |
author_role | aut aut |
author_sort | Bishop, Christopher J. |
author_variant | c j b cj cjb y p yp |
building | Verbundindex |
bvnumber | BV044042772 |
classification_rvk | SK 810 SK 430 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781316460238 (OCoLC)973566667 (DE-599)BVBBV044042772 |
dewey-full | 514/.742 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514/.742 |
dewey-search | 514/.742 |
dewey-sort | 3514 3742 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/9781316460238 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03156nmm a2200529zcb4500</leader><controlfield tag="001">BV044042772</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210316 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">170214s2017 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781316460238</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-316-46023-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781316460238</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781316460238</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)973566667</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044042772</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514/.742</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 810</subfield><subfield code="0">(DE-625)143257:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 430</subfield><subfield code="0">(DE-625)143239:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bishop, Christopher J.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1122745281</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fractals in probability and analysis</subfield><subfield code="c">Christopher J. Bishop, Stony Brook University, Stony Brook, NY, Yuval Peres, Microsoft Research, Redmond, WA.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (ix, 402 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge studies in advanced mathematics</subfield><subfield code="v">162</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This is a mathematically rigorous introduction to fractals which emphasizes examples and fundamental ideas. Building up from basic techniques of geometric measure theory and probability, central topics such as Hausdorff dimension, self-similar sets and Brownian motion are introduced, as are more specialized topics, including Kakeya sets, capacity, percolation on trees and the traveling salesman theorem. The broad range of techniques presented enables key ideas to be highlighted, without the distraction of excessive technicalities. The authors incorporate some novel proofs which are simpler than those available elsewhere. Where possible, chapters are designed to be read independently so the book can be used to teach a variety of courses, with the clear structure offering students an accessible route into the topic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fractal analysis / Problems, exercises, etc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometric analysis / Problems, exercises, etc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability measures / Problems, exercises, etc</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wahrscheinlichkeitsmaß</subfield><subfield code="0">(DE-588)4137556-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fraktal</subfield><subfield code="0">(DE-588)4123220-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Fraktal</subfield><subfield code="0">(DE-588)4123220-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Wahrscheinlichkeitsmaß</subfield><subfield code="0">(DE-588)4137556-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Peres, Yuval</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)121404420</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-107-13411-9</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Cambridge studies in advanced mathematics</subfield><subfield code="v">162</subfield><subfield code="w">(DE-604)BV044781283</subfield><subfield code="9">162</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781316460238</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029449780</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781316460238</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781316460238</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781316460238</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBR Einzelkauf (Lückenergänzung CUP Serien 2018)</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044042772 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:41:59Z |
institution | BVB |
isbn | 9781316460238 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029449780 |
oclc_num | 973566667 |
open_access_boolean | |
owner | DE-12 DE-92 DE-355 DE-BY-UBR DE-83 |
owner_facet | DE-12 DE-92 DE-355 DE-BY-UBR DE-83 |
physical | 1 online resource (ix, 402 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | Cambridge University Press |
record_format | marc |
series | Cambridge studies in advanced mathematics |
series2 | Cambridge studies in advanced mathematics |
spelling | Bishop, Christopher J. Verfasser (DE-588)1122745281 aut Fractals in probability and analysis Christopher J. Bishop, Stony Brook University, Stony Brook, NY, Yuval Peres, Microsoft Research, Redmond, WA. Cambridge Cambridge University Press 2017 1 online resource (ix, 402 Seiten) txt rdacontent c rdamedia cr rdacarrier Cambridge studies in advanced mathematics 162 This is a mathematically rigorous introduction to fractals which emphasizes examples and fundamental ideas. Building up from basic techniques of geometric measure theory and probability, central topics such as Hausdorff dimension, self-similar sets and Brownian motion are introduced, as are more specialized topics, including Kakeya sets, capacity, percolation on trees and the traveling salesman theorem. The broad range of techniques presented enables key ideas to be highlighted, without the distraction of excessive technicalities. The authors incorporate some novel proofs which are simpler than those available elsewhere. Where possible, chapters are designed to be read independently so the book can be used to teach a variety of courses, with the clear structure offering students an accessible route into the topic Fractal analysis / Problems, exercises, etc Geometric analysis / Problems, exercises, etc Probability measures / Problems, exercises, etc Wahrscheinlichkeitsmaß (DE-588)4137556-7 gnd rswk-swf Fraktal (DE-588)4123220-3 gnd rswk-swf Fraktal (DE-588)4123220-3 s Wahrscheinlichkeitsmaß (DE-588)4137556-7 s DE-604 Peres, Yuval Verfasser (DE-588)121404420 aut Erscheint auch als Druck-Ausgabe 978-1-107-13411-9 Cambridge studies in advanced mathematics 162 (DE-604)BV044781283 162 https://doi.org/10.1017/9781316460238 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Bishop, Christopher J. Peres, Yuval Fractals in probability and analysis Cambridge studies in advanced mathematics Fractal analysis / Problems, exercises, etc Geometric analysis / Problems, exercises, etc Probability measures / Problems, exercises, etc Wahrscheinlichkeitsmaß (DE-588)4137556-7 gnd Fraktal (DE-588)4123220-3 gnd |
subject_GND | (DE-588)4137556-7 (DE-588)4123220-3 |
title | Fractals in probability and analysis |
title_auth | Fractals in probability and analysis |
title_exact_search | Fractals in probability and analysis |
title_full | Fractals in probability and analysis Christopher J. Bishop, Stony Brook University, Stony Brook, NY, Yuval Peres, Microsoft Research, Redmond, WA. |
title_fullStr | Fractals in probability and analysis Christopher J. Bishop, Stony Brook University, Stony Brook, NY, Yuval Peres, Microsoft Research, Redmond, WA. |
title_full_unstemmed | Fractals in probability and analysis Christopher J. Bishop, Stony Brook University, Stony Brook, NY, Yuval Peres, Microsoft Research, Redmond, WA. |
title_short | Fractals in probability and analysis |
title_sort | fractals in probability and analysis |
topic | Fractal analysis / Problems, exercises, etc Geometric analysis / Problems, exercises, etc Probability measures / Problems, exercises, etc Wahrscheinlichkeitsmaß (DE-588)4137556-7 gnd Fraktal (DE-588)4123220-3 gnd |
topic_facet | Fractal analysis / Problems, exercises, etc Geometric analysis / Problems, exercises, etc Probability measures / Problems, exercises, etc Wahrscheinlichkeitsmaß Fraktal |
url | https://doi.org/10.1017/9781316460238 |
volume_link | (DE-604)BV044781283 |
work_keys_str_mv | AT bishopchristopherj fractalsinprobabilityandanalysis AT peresyuval fractalsinprobabilityandanalysis |