Probability on trees and networks:
Starting around the late 1950s, several research communities began relating the geometry of graphs to stochastic processes on these graphs. This book, twenty years in the making, ties together research in the field, encompassing work on percolation, isoperimetric inequalities, eigenvalues, transitio...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York
Cambridge University Press
2016
|
Schriftenreihe: | Cambridge series on statistical and probabilistic mathematics
42 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBM01 UPA01 Volltext |
Zusammenfassung: | Starting around the late 1950s, several research communities began relating the geometry of graphs to stochastic processes on these graphs. This book, twenty years in the making, ties together research in the field, encompassing work on percolation, isoperimetric inequalities, eigenvalues, transition probabilities, and random walks. Written by two leading researchers, the text emphasizes intuition, while giving complete proofs and more than 850 exercises. Many recent developments, in which the authors have played a leading role, are discussed, including percolation on trees and Cayley graphs, uniform spanning forests, the mass-transport technique, and connections on random walks on graphs to embedding in Hilbert space. This state-of-the-art account of probability on networks will be indispensable for graduate students and researchers alike |
Beschreibung: | Title from publisher's bibliographic system (viewed on 31 Jan 2017) |
Beschreibung: | 1 online resource (xv, 698 pages) |
ISBN: | 9781316672815 |
DOI: | 10.1017/9781316672815 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV044040273 | ||
003 | DE-604 | ||
005 | 20230824 | ||
007 | cr|uuu---uuuuu | ||
008 | 170213s2016 |||| o||u| ||||||eng d | ||
020 | |a 9781316672815 |c Online |9 978-1-316-67281-5 | ||
024 | 7 | |a 10.1017/9781316672815 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781316672815 | ||
035 | |a (OCoLC)973564187 | ||
035 | |a (DE-599)BVBBV044040273 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-739 |a DE-19 | ||
082 | 0 | |a 511/.52 | |
084 | |a QH 233 |0 (DE-625)141548: |2 rvk | ||
084 | |a SK 835 |0 (DE-625)143260: |2 rvk | ||
100 | 1 | |a Lyons, Russell |e Verfasser |0 (DE-588)1130806618 |4 aut | |
245 | 1 | 0 | |a Probability on trees and networks |c Russell Lyons, Indiana University, Bloomington, Yuval Peres, Microsoft Research, Redmond, Washington |
264 | 1 | |a New York |b Cambridge University Press |c 2016 | |
300 | |a 1 online resource (xv, 698 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge series on statistical and probabilistic mathematics |v 42 | |
500 | |a Title from publisher's bibliographic system (viewed on 31 Jan 2017) | ||
520 | |a Starting around the late 1950s, several research communities began relating the geometry of graphs to stochastic processes on these graphs. This book, twenty years in the making, ties together research in the field, encompassing work on percolation, isoperimetric inequalities, eigenvalues, transition probabilities, and random walks. Written by two leading researchers, the text emphasizes intuition, while giving complete proofs and more than 850 exercises. Many recent developments, in which the authors have played a leading role, are discussed, including percolation on trees and Cayley graphs, uniform spanning forests, the mass-transport technique, and connections on random walks on graphs to embedding in Hilbert space. This state-of-the-art account of probability on networks will be indispensable for graduate students and researchers alike | ||
650 | 4 | |a Stochastic processes | |
650 | 4 | |a Trees (Graph theory) | |
700 | 1 | |a Peres, Yuval |e Verfasser |0 (DE-588)121404420 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-1-107-16015-6 |
856 | 4 | 0 | |u https://doi.org/10.1017/9781316672815 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029447336 | ||
966 | e | |u https://doi.org/10.1017/9781316672815 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781316672815 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781316672815 |l UBM01 |p ZDB-20-CBO |q UBM_PDA_CBO_Kauf_2023 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781316672815 |l UPA01 |p ZDB-20-CBO |q UPA_PDA_CBO_Kauf2020 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804177050375815168 |
---|---|
any_adam_object | |
author | Lyons, Russell Peres, Yuval |
author_GND | (DE-588)1130806618 (DE-588)121404420 |
author_facet | Lyons, Russell Peres, Yuval |
author_role | aut aut |
author_sort | Lyons, Russell |
author_variant | r l rl y p yp |
building | Verbundindex |
bvnumber | BV044040273 |
classification_rvk | QH 233 SK 835 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781316672815 (OCoLC)973564187 (DE-599)BVBBV044040273 |
dewey-full | 511/.52 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511/.52 |
dewey-search | 511/.52 |
dewey-sort | 3511 252 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik Wirtschaftswissenschaften |
doi_str_mv | 10.1017/9781316672815 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02882nmm a2200469zcb4500</leader><controlfield tag="001">BV044040273</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230824 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">170213s2016 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781316672815</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-316-67281-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781316672815</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781316672815</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)973564187</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044040273</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511/.52</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 233</subfield><subfield code="0">(DE-625)141548:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 835</subfield><subfield code="0">(DE-625)143260:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lyons, Russell</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1130806618</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Probability on trees and networks</subfield><subfield code="c">Russell Lyons, Indiana University, Bloomington, Yuval Peres, Microsoft Research, Redmond, Washington</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xv, 698 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge series on statistical and probabilistic mathematics</subfield><subfield code="v">42</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 31 Jan 2017)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Starting around the late 1950s, several research communities began relating the geometry of graphs to stochastic processes on these graphs. This book, twenty years in the making, ties together research in the field, encompassing work on percolation, isoperimetric inequalities, eigenvalues, transition probabilities, and random walks. Written by two leading researchers, the text emphasizes intuition, while giving complete proofs and more than 850 exercises. Many recent developments, in which the authors have played a leading role, are discussed, including percolation on trees and Cayley graphs, uniform spanning forests, the mass-transport technique, and connections on random walks on graphs to embedding in Hilbert space. This state-of-the-art account of probability on networks will be indispensable for graduate students and researchers alike</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Trees (Graph theory)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Peres, Yuval</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)121404420</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-1-107-16015-6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781316672815</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029447336</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781316672815</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781316672815</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781316672815</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBM_PDA_CBO_Kauf_2023</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781316672815</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UPA_PDA_CBO_Kauf2020</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044040273 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:41:55Z |
institution | BVB |
isbn | 9781316672815 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029447336 |
oclc_num | 973564187 |
open_access_boolean | |
owner | DE-12 DE-92 DE-739 DE-19 DE-BY-UBM |
owner_facet | DE-12 DE-92 DE-739 DE-19 DE-BY-UBM |
physical | 1 online resource (xv, 698 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBM_PDA_CBO_Kauf_2023 ZDB-20-CBO UPA_PDA_CBO_Kauf2020 |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge series on statistical and probabilistic mathematics |
spelling | Lyons, Russell Verfasser (DE-588)1130806618 aut Probability on trees and networks Russell Lyons, Indiana University, Bloomington, Yuval Peres, Microsoft Research, Redmond, Washington New York Cambridge University Press 2016 1 online resource (xv, 698 pages) txt rdacontent c rdamedia cr rdacarrier Cambridge series on statistical and probabilistic mathematics 42 Title from publisher's bibliographic system (viewed on 31 Jan 2017) Starting around the late 1950s, several research communities began relating the geometry of graphs to stochastic processes on these graphs. This book, twenty years in the making, ties together research in the field, encompassing work on percolation, isoperimetric inequalities, eigenvalues, transition probabilities, and random walks. Written by two leading researchers, the text emphasizes intuition, while giving complete proofs and more than 850 exercises. Many recent developments, in which the authors have played a leading role, are discussed, including percolation on trees and Cayley graphs, uniform spanning forests, the mass-transport technique, and connections on random walks on graphs to embedding in Hilbert space. This state-of-the-art account of probability on networks will be indispensable for graduate students and researchers alike Stochastic processes Trees (Graph theory) Peres, Yuval Verfasser (DE-588)121404420 aut Erscheint auch als Druckausgabe 978-1-107-16015-6 https://doi.org/10.1017/9781316672815 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Lyons, Russell Peres, Yuval Probability on trees and networks Stochastic processes Trees (Graph theory) |
title | Probability on trees and networks |
title_auth | Probability on trees and networks |
title_exact_search | Probability on trees and networks |
title_full | Probability on trees and networks Russell Lyons, Indiana University, Bloomington, Yuval Peres, Microsoft Research, Redmond, Washington |
title_fullStr | Probability on trees and networks Russell Lyons, Indiana University, Bloomington, Yuval Peres, Microsoft Research, Redmond, Washington |
title_full_unstemmed | Probability on trees and networks Russell Lyons, Indiana University, Bloomington, Yuval Peres, Microsoft Research, Redmond, Washington |
title_short | Probability on trees and networks |
title_sort | probability on trees and networks |
topic | Stochastic processes Trees (Graph theory) |
topic_facet | Stochastic processes Trees (Graph theory) |
url | https://doi.org/10.1017/9781316672815 |
work_keys_str_mv | AT lyonsrussell probabilityontreesandnetworks AT peresyuval probabilityontreesandnetworks |