The principles of Newtonian and quantum mechanics: the need for Planck's constant, h
"The second edition of this book deals, as the first, with the foundations of classical physics from the "symplectic" point of view, and of quantum mechanics from the "metaplectic" point of view. We have revised and augmented the topics studied in the first edition in the li...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New Jersey ; London ; Singapore ; Beijing ; Shanghai ; Hong Kong ; Taipei ; Chennai ; Tokyo
World Scientific
[2017]
|
Ausgabe: | 2nd edition |
Schlagworte: | |
Online-Zugang: | UBW01 Volltext Inhaltsverzeichnis |
Zusammenfassung: | "The second edition of this book deals, as the first, with the foundations of classical physics from the "symplectic" point of view, and of quantum mechanics from the "metaplectic" point of view. We have revised and augmented the topics studied in the first edition in the light of new results, and added several new sections. The Bohmian interpretation of quantum mechanics is discussed in detail. Phase space quantization is achieved using the "principle of the symplectic camel", which is a deep topological property of Hamiltonian flows. We introduce the notion of "quantum blob", which can be viewed as the fundamental physe space unit. The mathematical tools developed in this book are the theory of the symplectic and metaplectic group, the Maslov index in a rigrous form, and the Leray index of a pair of Lagrangian planes. The concept of the "metatron" is introduced, in connection with the Bohmian theory of motion. The short-time behavior of the propagator is studied and applied to the quantum Zeno effect"... |
Beschreibung: | Includes bibliographical references |
Beschreibung: | 1 Online-Ressource (xxv, 396 Seiten) Diagramme |
ISBN: | 9789813200975 9789813200982 |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV044039205 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 170213s2017 xxu|||| o||u| ||||||eng d | ||
010 | |a 016036280 | ||
020 | |a 9789813200975 |c Online |9 978-981-3200-97-5 | ||
020 | |a 9789813200982 |c Online |9 978-981-3200-98-2 | ||
024 | 7 | |a 10.1142/9789813200975 |2 doi | |
035 | |a (OCoLC)973561536 | ||
035 | |a (DE-599)BVBBV044039205 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-20 | ||
050 | 0 | |a QC20.7.C3 | |
082 | 0 | |a 530.15/564 |2 23 | |
084 | |a UF 1000 |0 (DE-625)145552: |2 rvk | ||
084 | |a UK 1000 |0 (DE-625)145785: |2 rvk | ||
084 | |a UK 1200 |0 (DE-625)145792: |2 rvk | ||
100 | 1 | |a Gosson, Maurice A. de |d 1948- |0 (DE-588)1024136949 |4 aut | |
245 | 1 | 0 | |a The principles of Newtonian and quantum mechanics |b the need for Planck's constant, h |c by Maurice A. de Gosson (University of Vienna, Austria). Foreword by Basil Hiley |
250 | |a 2nd edition | ||
264 | 1 | |a New Jersey ; London ; Singapore ; Beijing ; Shanghai ; Hong Kong ; Taipei ; Chennai ; Tokyo |b World Scientific |c [2017] | |
264 | 4 | |c © 2017 | |
300 | |a 1 Online-Ressource (xxv, 396 Seiten) |b Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references | ||
520 | |a "The second edition of this book deals, as the first, with the foundations of classical physics from the "symplectic" point of view, and of quantum mechanics from the "metaplectic" point of view. We have revised and augmented the topics studied in the first edition in the light of new results, and added several new sections. The Bohmian interpretation of quantum mechanics is discussed in detail. Phase space quantization is achieved using the "principle of the symplectic camel", which is a deep topological property of Hamiltonian flows. We introduce the notion of "quantum blob", which can be viewed as the fundamental physe space unit. The mathematical tools developed in this book are the theory of the symplectic and metaplectic group, the Maslov index in a rigrous form, and the Leray index of a pair of Lagrangian planes. The concept of the "metatron" is introduced, in connection with the Bohmian theory of motion. The short-time behavior of the propagator is studied and applied to the quantum Zeno effect"... | ||
650 | 4 | |a Lagrangian functions | |
650 | 4 | |a Maslov index | |
650 | 4 | |a Geometric quantization | |
650 | 0 | 7 | |a Maslov-Index |0 (DE-588)4169023-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematische Physik |0 (DE-588)4037952-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantenmechanik |0 (DE-588)4047989-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geometrische Quantisierung |0 (DE-588)4156720-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Symplektische Geometrie |0 (DE-588)4194232-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lagrange-Funktion |0 (DE-588)4166459-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mechanik |0 (DE-588)4038168-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lagrange-Funktion |0 (DE-588)4166459-0 |D s |
689 | 0 | 1 | |a Maslov-Index |0 (DE-588)4169023-0 |D s |
689 | 0 | 2 | |a Geometrische Quantisierung |0 (DE-588)4156720-1 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Mechanik |0 (DE-588)4038168-7 |D s |
689 | 1 | 1 | |a Quantenmechanik |0 (DE-588)4047989-4 |D s |
689 | 1 | 2 | |a Mathematische Physik |0 (DE-588)4037952-8 |D s |
689 | 1 | 3 | |a Symplektische Geometrie |0 (DE-588)4194232-2 |D s |
689 | 1 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-981-3200-96-8 |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/10307#t=toc |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
856 | 4 | 2 | |m LoC Fremddatenuebernahme |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029446281&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029446281 | ||
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/10307#t=toc |l UBW01 |p ZDB-124-WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804177049225527296 |
---|---|
adam_text | THE PRINCIPLES OF NEWTONIAN AND QUANTUM MECHANICS
/ GOSSON, MAURICE DEYYEAUTHOR
: 2017
TABLE OF CONTENTS / INHALTSVERZEICHNIS
FROM KEPLER TO SCHRADINGER
AND BEYOND
NEWTONIAN MECHANICS
THE SYMPLECTIC GROUP
ACTION AND PHASE
SEMI-CLASSICAL MECHANICS
METAPLECTIC GROUP, MASLOV INDEX, AND QUANTIZATION
SCHRADINGER S EQUATION AND THE METATRON
DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT.
|
any_adam_object | 1 |
author | Gosson, Maurice A. de 1948- |
author_GND | (DE-588)1024136949 |
author_facet | Gosson, Maurice A. de 1948- |
author_role | aut |
author_sort | Gosson, Maurice A. de 1948- |
author_variant | m a d g mad madg |
building | Verbundindex |
bvnumber | BV044039205 |
callnumber-first | Q - Science |
callnumber-label | QC20 |
callnumber-raw | QC20.7.C3 |
callnumber-search | QC20.7.C3 |
callnumber-sort | QC 220.7 C3 |
callnumber-subject | QC - Physics |
classification_rvk | UF 1000 UK 1000 UK 1200 |
collection | ZDB-124-WOP |
ctrlnum | (OCoLC)973561536 (DE-599)BVBBV044039205 |
dewey-full | 530.15/564 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.15/564 |
dewey-search | 530.15/564 |
dewey-sort | 3530.15 3564 |
dewey-tens | 530 - Physics |
discipline | Physik |
edition | 2nd edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04088nmm a2200697 c 4500</leader><controlfield tag="001">BV044039205</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">170213s2017 xxu|||| o||u| ||||||eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">016036280</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789813200975</subfield><subfield code="c">Online</subfield><subfield code="9">978-981-3200-97-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789813200982</subfield><subfield code="c">Online</subfield><subfield code="9">978-981-3200-98-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/9789813200975</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)973561536</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044039205</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC20.7.C3</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.15/564</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 1000</subfield><subfield code="0">(DE-625)145552:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UK 1000</subfield><subfield code="0">(DE-625)145785:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UK 1200</subfield><subfield code="0">(DE-625)145792:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gosson, Maurice A. de</subfield><subfield code="d">1948-</subfield><subfield code="0">(DE-588)1024136949</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The principles of Newtonian and quantum mechanics</subfield><subfield code="b">the need for Planck's constant, h</subfield><subfield code="c">by Maurice A. de Gosson (University of Vienna, Austria). Foreword by Basil Hiley</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2nd edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New Jersey ; London ; Singapore ; Beijing ; Shanghai ; Hong Kong ; Taipei ; Chennai ; Tokyo</subfield><subfield code="b">World Scientific</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xxv, 396 Seiten)</subfield><subfield code="b">Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"The second edition of this book deals, as the first, with the foundations of classical physics from the "symplectic" point of view, and of quantum mechanics from the "metaplectic" point of view. We have revised and augmented the topics studied in the first edition in the light of new results, and added several new sections. The Bohmian interpretation of quantum mechanics is discussed in detail. Phase space quantization is achieved using the "principle of the symplectic camel", which is a deep topological property of Hamiltonian flows. We introduce the notion of "quantum blob", which can be viewed as the fundamental physe space unit. The mathematical tools developed in this book are the theory of the symplectic and metaplectic group, the Maslov index in a rigrous form, and the Leray index of a pair of Lagrangian planes. The concept of the "metatron" is introduced, in connection with the Bohmian theory of motion. The short-time behavior of the propagator is studied and applied to the quantum Zeno effect"...</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lagrangian functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Maslov index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometric quantization</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maslov-Index</subfield><subfield code="0">(DE-588)4169023-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenmechanik</subfield><subfield code="0">(DE-588)4047989-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrische Quantisierung</subfield><subfield code="0">(DE-588)4156720-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Symplektische Geometrie</subfield><subfield code="0">(DE-588)4194232-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lagrange-Funktion</subfield><subfield code="0">(DE-588)4166459-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mechanik</subfield><subfield code="0">(DE-588)4038168-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lagrange-Funktion</subfield><subfield code="0">(DE-588)4166459-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Maslov-Index</subfield><subfield code="0">(DE-588)4169023-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Geometrische Quantisierung</subfield><subfield code="0">(DE-588)4156720-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Mechanik</subfield><subfield code="0">(DE-588)4038168-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Quantenmechanik</subfield><subfield code="0">(DE-588)4047989-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="3"><subfield code="a">Symplektische Geometrie</subfield><subfield code="0">(DE-588)4194232-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-981-3200-96-8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/10307#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">LoC Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029446281&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029446281</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/10307#t=toc</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044039205 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:41:53Z |
institution | BVB |
isbn | 9789813200975 9789813200982 |
language | English |
lccn | 016036280 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029446281 |
oclc_num | 973561536 |
open_access_boolean | |
owner | DE-20 |
owner_facet | DE-20 |
physical | 1 Online-Ressource (xxv, 396 Seiten) Diagramme |
psigel | ZDB-124-WOP |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | World Scientific |
record_format | marc |
spelling | Gosson, Maurice A. de 1948- (DE-588)1024136949 aut The principles of Newtonian and quantum mechanics the need for Planck's constant, h by Maurice A. de Gosson (University of Vienna, Austria). Foreword by Basil Hiley 2nd edition New Jersey ; London ; Singapore ; Beijing ; Shanghai ; Hong Kong ; Taipei ; Chennai ; Tokyo World Scientific [2017] © 2017 1 Online-Ressource (xxv, 396 Seiten) Diagramme txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references "The second edition of this book deals, as the first, with the foundations of classical physics from the "symplectic" point of view, and of quantum mechanics from the "metaplectic" point of view. We have revised and augmented the topics studied in the first edition in the light of new results, and added several new sections. The Bohmian interpretation of quantum mechanics is discussed in detail. Phase space quantization is achieved using the "principle of the symplectic camel", which is a deep topological property of Hamiltonian flows. We introduce the notion of "quantum blob", which can be viewed as the fundamental physe space unit. The mathematical tools developed in this book are the theory of the symplectic and metaplectic group, the Maslov index in a rigrous form, and the Leray index of a pair of Lagrangian planes. The concept of the "metatron" is introduced, in connection with the Bohmian theory of motion. The short-time behavior of the propagator is studied and applied to the quantum Zeno effect"... Lagrangian functions Maslov index Geometric quantization Maslov-Index (DE-588)4169023-0 gnd rswk-swf Mathematische Physik (DE-588)4037952-8 gnd rswk-swf Quantenmechanik (DE-588)4047989-4 gnd rswk-swf Geometrische Quantisierung (DE-588)4156720-1 gnd rswk-swf Symplektische Geometrie (DE-588)4194232-2 gnd rswk-swf Lagrange-Funktion (DE-588)4166459-0 gnd rswk-swf Mechanik (DE-588)4038168-7 gnd rswk-swf Lagrange-Funktion (DE-588)4166459-0 s Maslov-Index (DE-588)4169023-0 s Geometrische Quantisierung (DE-588)4156720-1 s DE-604 Mechanik (DE-588)4038168-7 s Quantenmechanik (DE-588)4047989-4 s Mathematische Physik (DE-588)4037952-8 s Symplektische Geometrie (DE-588)4194232-2 s Erscheint auch als Druckausgabe 978-981-3200-96-8 http://www.worldscientific.com/worldscibooks/10.1142/10307#t=toc Verlag URL des Erstveröffentlichers Volltext LoC Fremddatenuebernahme application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029446281&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Gosson, Maurice A. de 1948- The principles of Newtonian and quantum mechanics the need for Planck's constant, h Lagrangian functions Maslov index Geometric quantization Maslov-Index (DE-588)4169023-0 gnd Mathematische Physik (DE-588)4037952-8 gnd Quantenmechanik (DE-588)4047989-4 gnd Geometrische Quantisierung (DE-588)4156720-1 gnd Symplektische Geometrie (DE-588)4194232-2 gnd Lagrange-Funktion (DE-588)4166459-0 gnd Mechanik (DE-588)4038168-7 gnd |
subject_GND | (DE-588)4169023-0 (DE-588)4037952-8 (DE-588)4047989-4 (DE-588)4156720-1 (DE-588)4194232-2 (DE-588)4166459-0 (DE-588)4038168-7 |
title | The principles of Newtonian and quantum mechanics the need for Planck's constant, h |
title_auth | The principles of Newtonian and quantum mechanics the need for Planck's constant, h |
title_exact_search | The principles of Newtonian and quantum mechanics the need for Planck's constant, h |
title_full | The principles of Newtonian and quantum mechanics the need for Planck's constant, h by Maurice A. de Gosson (University of Vienna, Austria). Foreword by Basil Hiley |
title_fullStr | The principles of Newtonian and quantum mechanics the need for Planck's constant, h by Maurice A. de Gosson (University of Vienna, Austria). Foreword by Basil Hiley |
title_full_unstemmed | The principles of Newtonian and quantum mechanics the need for Planck's constant, h by Maurice A. de Gosson (University of Vienna, Austria). Foreword by Basil Hiley |
title_short | The principles of Newtonian and quantum mechanics |
title_sort | the principles of newtonian and quantum mechanics the need for planck s constant h |
title_sub | the need for Planck's constant, h |
topic | Lagrangian functions Maslov index Geometric quantization Maslov-Index (DE-588)4169023-0 gnd Mathematische Physik (DE-588)4037952-8 gnd Quantenmechanik (DE-588)4047989-4 gnd Geometrische Quantisierung (DE-588)4156720-1 gnd Symplektische Geometrie (DE-588)4194232-2 gnd Lagrange-Funktion (DE-588)4166459-0 gnd Mechanik (DE-588)4038168-7 gnd |
topic_facet | Lagrangian functions Maslov index Geometric quantization Maslov-Index Mathematische Physik Quantenmechanik Geometrische Quantisierung Symplektische Geometrie Lagrange-Funktion Mechanik |
url | http://www.worldscientific.com/worldscibooks/10.1142/10307#t=toc http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029446281&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT gossonmauriceade theprinciplesofnewtonianandquantummechanicstheneedforplancksconstanth |