Decision making under uncertainty: theory and application
Many important problems involve decision making under uncertainty -- that is, choosing actions based on often imperfect observations, with unknown outcomes. Designers of automated decision support systems must take into account the various sources of uncertainty while balancing the multiple objectiv...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge, Massachusetts
MIT Press
[2015]
|
Schriftenreihe: | Lincoln Laboratory series
|
Schlagworte: | |
Online-Zugang: | FHI01 Volltext |
Zusammenfassung: | Many important problems involve decision making under uncertainty -- that is, choosing actions based on often imperfect observations, with unknown outcomes. Designers of automated decision support systems must take into account the various sources of uncertainty while balancing the multiple objectives of the system. This book provides an introduction to the challenges of decision making under uncertainty from a computational perspective. It presents both the theory behind decision making models and algorithms and a collection of example applications that range from speech recognition to aircraft collision avoidance.Focusing on two methods for designing decision agents, planning and reinforcement learning, the book covers probabilistic models, introducing Bayesian networks as a graphical model that captures probabilistic relationships between variables; utility theory as a framework for understanding optimal decision making under uncertainty; Markov decision processes as a method for modeling sequential problems; model uncertainty; state uncertainty; and cooperative decision making involving multiple interacting agents. A series of applications shows how the theoretical concepts can be applied to systems for attribute-based person search, speech applications, collision avoidance, and unmanned aircraft persistent surveillance. Decision Making Under Uncertainty unifies research from different communities using consistent notation, and is accessible to students and researchers across engineering disciplines who have some prior exposure to probability theory and calculus. It can be used as a text for advanced undergraduate and graduate students in fields including computer science, aerospace and electrical engineering, and management science. It will also be a valuable professional reference for researchers in a variety of disciplines |
Beschreibung: | Includes bibliographical references and index. - Mode of access: World Wide Web |
Beschreibung: | 1 Online-Ressource (xxv, 323 pages) illustrations (some color), portraits |
ISBN: | 9780262331708 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044032148 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 170207s2015 |||| o||u| ||||||eng d | ||
020 | |a 9780262331708 |c Online |9 978-0-262-33170-8 | ||
035 | |a (ZDB-37-IEM)7288640 | ||
035 | |a (OCoLC)973044778 | ||
035 | |a (DE-599)BVBBV044032148 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-573 | ||
082 | 0 | |a 003/.56 | |
084 | |a QP 327 |0 (DE-625)141858: |2 rvk | ||
084 | |a SK 830 |0 (DE-625)143259: |2 rvk | ||
084 | |a ST 300 |0 (DE-625)143650: |2 rvk | ||
100 | 1 | |a Kochenderfer, Mykel J. |d 1980- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Decision making under uncertainty |b theory and application |c Mykel J. Kochenderfer, with contributions from Christopher Amato, Girish Chowdhary, Jonathan P. How, Hayley J. Davison Reynolds, Jason R. Thornton, Pedro A. Torres-Carrasquillo, N. Kemal Ure, John Vian |
264 | 1 | |a Cambridge, Massachusetts |b MIT Press |c [2015] | |
300 | |a 1 Online-Ressource (xxv, 323 pages) |b illustrations (some color), portraits | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Lincoln Laboratory series | |
500 | |a Includes bibliographical references and index. - Mode of access: World Wide Web | ||
520 | |a Many important problems involve decision making under uncertainty -- that is, choosing actions based on often imperfect observations, with unknown outcomes. Designers of automated decision support systems must take into account the various sources of uncertainty while balancing the multiple objectives of the system. This book provides an introduction to the challenges of decision making under uncertainty from a computational perspective. It presents both the theory behind decision making models and algorithms and a collection of example applications that range from speech recognition to aircraft collision avoidance.Focusing on two methods for designing decision agents, planning and reinforcement learning, the book covers probabilistic models, introducing Bayesian networks as a graphical model that captures probabilistic relationships between variables; utility theory as a framework for understanding optimal decision making under uncertainty; Markov decision processes as a method for modeling sequential problems; model uncertainty; state uncertainty; and cooperative decision making involving multiple interacting agents. A series of applications shows how the theoretical concepts can be applied to systems for attribute-based person search, speech applications, collision avoidance, and unmanned aircraft persistent surveillance. Decision Making Under Uncertainty unifies research from different communities using consistent notation, and is accessible to students and researchers across engineering disciplines who have some prior exposure to probability theory and calculus. It can be used as a text for advanced undergraduate and graduate students in fields including computer science, aerospace and electrical engineering, and management science. It will also be a valuable professional reference for researchers in a variety of disciplines | ||
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Intelligent control systems | |
650 | 4 | |a Automatic machinery | |
650 | 4 | |a Decision making / Mathematical models | |
650 | 0 | 7 | |a Entscheidungsfindung |0 (DE-588)4113446-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Unsicherheit |0 (DE-588)4186957-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Entscheidungsunterstützungssystem |0 (DE-588)4191815-0 |2 gnd |9 rswk-swf |
653 | |a Electronic books | ||
655 | 7 | |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
689 | 0 | 0 | |a Entscheidungsfindung |0 (DE-588)4113446-1 |D s |
689 | 0 | 1 | |a Unsicherheit |0 (DE-588)4186957-6 |D s |
689 | 0 | 2 | |a Entscheidungsunterstützungssystem |0 (DE-588)4191815-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-262-02925-4 |
856 | 4 | 0 | |u http://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=7288640 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-37-IEM | ||
940 | 1 | |q ZDB-37-IEM15 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-029439393 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=7288640 |l FHI01 |p ZDB-37-IEM |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804177036076384256 |
---|---|
any_adam_object | |
author | Kochenderfer, Mykel J. 1980- |
author_facet | Kochenderfer, Mykel J. 1980- |
author_role | aut |
author_sort | Kochenderfer, Mykel J. 1980- |
author_variant | m j k mj mjk |
building | Verbundindex |
bvnumber | BV044032148 |
classification_rvk | QP 327 SK 830 ST 300 |
collection | ZDB-37-IEM |
ctrlnum | (ZDB-37-IEM)7288640 (OCoLC)973044778 (DE-599)BVBBV044032148 |
dewey-full | 003/.56 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 003 - Systems |
dewey-raw | 003/.56 |
dewey-search | 003/.56 |
dewey-sort | 13 256 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik Mathematik Wirtschaftswissenschaften |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04375nmm a2200577zc 4500</leader><controlfield tag="001">BV044032148</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">170207s2015 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780262331708</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-262-33170-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-37-IEM)7288640</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)973044778</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044032148</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-573</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">003/.56</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QP 327</subfield><subfield code="0">(DE-625)141858:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 830</subfield><subfield code="0">(DE-625)143259:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kochenderfer, Mykel J.</subfield><subfield code="d">1980-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Decision making under uncertainty</subfield><subfield code="b">theory and application</subfield><subfield code="c">Mykel J. Kochenderfer, with contributions from Christopher Amato, Girish Chowdhary, Jonathan P. How, Hayley J. Davison Reynolds, Jason R. Thornton, Pedro A. Torres-Carrasquillo, N. Kemal Ure, John Vian</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, Massachusetts</subfield><subfield code="b">MIT Press</subfield><subfield code="c">[2015]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xxv, 323 pages)</subfield><subfield code="b">illustrations (some color), portraits</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Lincoln Laboratory series</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index. - Mode of access: World Wide Web</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Many important problems involve decision making under uncertainty -- that is, choosing actions based on often imperfect observations, with unknown outcomes. Designers of automated decision support systems must take into account the various sources of uncertainty while balancing the multiple objectives of the system. This book provides an introduction to the challenges of decision making under uncertainty from a computational perspective. It presents both the theory behind decision making models and algorithms and a collection of example applications that range from speech recognition to aircraft collision avoidance.Focusing on two methods for designing decision agents, planning and reinforcement learning, the book covers probabilistic models, introducing Bayesian networks as a graphical model that captures probabilistic relationships between variables; utility theory as a framework for understanding optimal decision making under uncertainty; Markov decision processes as a method for modeling sequential problems; model uncertainty; state uncertainty; and cooperative decision making involving multiple interacting agents. A series of applications shows how the theoretical concepts can be applied to systems for attribute-based person search, speech applications, collision avoidance, and unmanned aircraft persistent surveillance. Decision Making Under Uncertainty unifies research from different communities using consistent notation, and is accessible to students and researchers across engineering disciplines who have some prior exposure to probability theory and calculus. It can be used as a text for advanced undergraduate and graduate students in fields including computer science, aerospace and electrical engineering, and management science. It will also be a valuable professional reference for researchers in a variety of disciplines</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Intelligent control systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Automatic machinery</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decision making / Mathematical models</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Entscheidungsfindung</subfield><subfield code="0">(DE-588)4113446-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Unsicherheit</subfield><subfield code="0">(DE-588)4186957-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Entscheidungsunterstützungssystem</subfield><subfield code="0">(DE-588)4191815-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Electronic books</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Entscheidungsfindung</subfield><subfield code="0">(DE-588)4113446-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Unsicherheit</subfield><subfield code="0">(DE-588)4186957-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Entscheidungsunterstützungssystem</subfield><subfield code="0">(DE-588)4191815-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-262-02925-4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=7288640</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-37-IEM</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-37-IEM15</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029439393</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=7288640</subfield><subfield code="l">FHI01</subfield><subfield code="p">ZDB-37-IEM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | (DE-588)4151278-9 Einführung gnd-content |
genre_facet | Einführung |
id | DE-604.BV044032148 |
illustrated | Illustrated |
indexdate | 2024-07-10T07:41:41Z |
institution | BVB |
isbn | 9780262331708 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029439393 |
oclc_num | 973044778 |
open_access_boolean | |
owner | DE-573 |
owner_facet | DE-573 |
physical | 1 Online-Ressource (xxv, 323 pages) illustrations (some color), portraits |
psigel | ZDB-37-IEM ZDB-37-IEM15 |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | MIT Press |
record_format | marc |
series2 | Lincoln Laboratory series |
spelling | Kochenderfer, Mykel J. 1980- Verfasser aut Decision making under uncertainty theory and application Mykel J. Kochenderfer, with contributions from Christopher Amato, Girish Chowdhary, Jonathan P. How, Hayley J. Davison Reynolds, Jason R. Thornton, Pedro A. Torres-Carrasquillo, N. Kemal Ure, John Vian Cambridge, Massachusetts MIT Press [2015] 1 Online-Ressource (xxv, 323 pages) illustrations (some color), portraits txt rdacontent c rdamedia cr rdacarrier Lincoln Laboratory series Includes bibliographical references and index. - Mode of access: World Wide Web Many important problems involve decision making under uncertainty -- that is, choosing actions based on often imperfect observations, with unknown outcomes. Designers of automated decision support systems must take into account the various sources of uncertainty while balancing the multiple objectives of the system. This book provides an introduction to the challenges of decision making under uncertainty from a computational perspective. It presents both the theory behind decision making models and algorithms and a collection of example applications that range from speech recognition to aircraft collision avoidance.Focusing on two methods for designing decision agents, planning and reinforcement learning, the book covers probabilistic models, introducing Bayesian networks as a graphical model that captures probabilistic relationships between variables; utility theory as a framework for understanding optimal decision making under uncertainty; Markov decision processes as a method for modeling sequential problems; model uncertainty; state uncertainty; and cooperative decision making involving multiple interacting agents. A series of applications shows how the theoretical concepts can be applied to systems for attribute-based person search, speech applications, collision avoidance, and unmanned aircraft persistent surveillance. Decision Making Under Uncertainty unifies research from different communities using consistent notation, and is accessible to students and researchers across engineering disciplines who have some prior exposure to probability theory and calculus. It can be used as a text for advanced undergraduate and graduate students in fields including computer science, aerospace and electrical engineering, and management science. It will also be a valuable professional reference for researchers in a variety of disciplines Mathematisches Modell Intelligent control systems Automatic machinery Decision making / Mathematical models Entscheidungsfindung (DE-588)4113446-1 gnd rswk-swf Unsicherheit (DE-588)4186957-6 gnd rswk-swf Entscheidungsunterstützungssystem (DE-588)4191815-0 gnd rswk-swf Electronic books (DE-588)4151278-9 Einführung gnd-content Entscheidungsfindung (DE-588)4113446-1 s Unsicherheit (DE-588)4186957-6 s Entscheidungsunterstützungssystem (DE-588)4191815-0 s 1\p DE-604 Erscheint auch als Druckausgabe 978-0-262-02925-4 http://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=7288640 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Kochenderfer, Mykel J. 1980- Decision making under uncertainty theory and application Mathematisches Modell Intelligent control systems Automatic machinery Decision making / Mathematical models Entscheidungsfindung (DE-588)4113446-1 gnd Unsicherheit (DE-588)4186957-6 gnd Entscheidungsunterstützungssystem (DE-588)4191815-0 gnd |
subject_GND | (DE-588)4113446-1 (DE-588)4186957-6 (DE-588)4191815-0 (DE-588)4151278-9 |
title | Decision making under uncertainty theory and application |
title_auth | Decision making under uncertainty theory and application |
title_exact_search | Decision making under uncertainty theory and application |
title_full | Decision making under uncertainty theory and application Mykel J. Kochenderfer, with contributions from Christopher Amato, Girish Chowdhary, Jonathan P. How, Hayley J. Davison Reynolds, Jason R. Thornton, Pedro A. Torres-Carrasquillo, N. Kemal Ure, John Vian |
title_fullStr | Decision making under uncertainty theory and application Mykel J. Kochenderfer, with contributions from Christopher Amato, Girish Chowdhary, Jonathan P. How, Hayley J. Davison Reynolds, Jason R. Thornton, Pedro A. Torres-Carrasquillo, N. Kemal Ure, John Vian |
title_full_unstemmed | Decision making under uncertainty theory and application Mykel J. Kochenderfer, with contributions from Christopher Amato, Girish Chowdhary, Jonathan P. How, Hayley J. Davison Reynolds, Jason R. Thornton, Pedro A. Torres-Carrasquillo, N. Kemal Ure, John Vian |
title_short | Decision making under uncertainty |
title_sort | decision making under uncertainty theory and application |
title_sub | theory and application |
topic | Mathematisches Modell Intelligent control systems Automatic machinery Decision making / Mathematical models Entscheidungsfindung (DE-588)4113446-1 gnd Unsicherheit (DE-588)4186957-6 gnd Entscheidungsunterstützungssystem (DE-588)4191815-0 gnd |
topic_facet | Mathematisches Modell Intelligent control systems Automatic machinery Decision making / Mathematical models Entscheidungsfindung Unsicherheit Entscheidungsunterstützungssystem Einführung |
url | http://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=7288640 |
work_keys_str_mv | AT kochenderfermykelj decisionmakingunderuncertaintytheoryandapplication |