Wigner measure and semiclassical limits of nonlinear Schrödinger equations:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Providence, Rhode Island
American Mathematical Society
2008
New York, New York Courant Institute of Mathematical Sciences 2008 |
Schriftenreihe: | Courant lecture notes in mathematics
17 |
Schlagworte: | |
Online-Zugang: | UBM01 Volltext |
Beschreibung: | Includes bibliographical references (p. 193-197) Chapter 1. The classical WKB method - Chapter 2. Wigner measure - Chapter 3. The limit from the one-dimensional Schr odinger-Poisson to Vlasov-Poisson equations - Chapter 4. Semiclassical limit of Schr odinger-Poisson equations - Chapter 5. Semiclassical limit of the cubic Schr odinger equation in an exterior domain - Chapter 6. Incompressible and compressible limits of coupled systems of nonlinear Schr odinger equations - Chapter 7. High-frequency limit of the Helmholtz equation - Appendix A. Global solutions to (3.14) - Appendix B. Denseness of polynomials - Appendix C. Global existence of a solution to (5.1) - Appendix D. Global smooth solution to (6.1). - Mode of access : World Wide Web |
Beschreibung: | 1 Online-Resource (viii, 197 Seiten) |
ISBN: | 9781470431174 |
DOI: | 10.1090/cln/017 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043999377 | ||
003 | DE-604 | ||
005 | 20231221 | ||
007 | cr|uuu---uuuuu | ||
008 | 170116s2008 |||| o||u| ||||||eng d | ||
020 | |a 9781470431174 |9 978-1-4704-3117-4 | ||
024 | 7 | |a 10.1090/cln/017 |2 doi | |
035 | |a (OCoLC)969664512 | ||
035 | |a (DE-599)BVBBV043999377 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-19 | ||
082 | 0 | |a 530.12/4 | |
084 | |a SK 540 |0 (DE-625)143245: |2 rvk | ||
084 | |a UK 1200 |0 (DE-625)145792: |2 rvk | ||
084 | |a 35Q55 |2 msc/2000 | ||
084 | |a 35S05 |2 msc/2000 | ||
084 | |a 35C20 |2 msc/2000 | ||
084 | |a 35Q40 |2 msc/2000 | ||
100 | 1 | |a Zhang, Ping |d 1957- |0 (DE-588)1012212335 |4 aut | |
245 | 1 | 0 | |a Wigner measure and semiclassical limits of nonlinear Schrödinger equations |c Ping Zhang ; Academy of Mathematics and Systems Science, Chinese Academy of Sciences |
264 | 1 | |a Providence, Rhode Island |b American Mathematical Society |c 2008 | |
264 | 1 | |a New York, New York |b Courant Institute of Mathematical Sciences |c 2008 | |
300 | |a 1 Online-Resource (viii, 197 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Courant lecture notes in mathematics |v 17 | |
500 | |a Includes bibliographical references (p. 193-197) | ||
500 | |a Chapter 1. The classical WKB method - Chapter 2. Wigner measure - Chapter 3. The limit from the one-dimensional Schr odinger-Poisson to Vlasov-Poisson equations - Chapter 4. Semiclassical limit of Schr odinger-Poisson equations - Chapter 5. Semiclassical limit of the cubic Schr odinger equation in an exterior domain - Chapter 6. Incompressible and compressible limits of coupled systems of nonlinear Schr odinger equations - Chapter 7. High-frequency limit of the Helmholtz equation - Appendix A. Global solutions to (3.14) - Appendix B. Denseness of polynomials - Appendix C. Global existence of a solution to (5.1) - Appendix D. Global smooth solution to (6.1). - Mode of access : World Wide Web | ||
650 | 4 | |a Schr odinger equation | |
650 | 4 | |a WKB approximation | |
650 | 4 | |a Differential equations, Nonlinear | |
650 | 4 | |a Nonlinear theories | |
650 | 0 | 7 | |a Nichtlineare Schrödinger-Gleichung |0 (DE-588)4278277-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wigner-Verteilung |0 (DE-588)4641021-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nichtlineare Schrödinger-Gleichung |0 (DE-588)4278277-6 |D s |
689 | 0 | 1 | |a Wigner-Verteilung |0 (DE-588)4641021-1 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-8218-4701-5 |
830 | 0 | |a Courant lecture notes in mathematics |v 17 |w (DE-604)BV043997779 |9 17 | |
856 | 4 | 0 | |u https://doi.org/10.1090/cln/017 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-138-AMN | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029407357 | ||
966 | e | |u https://doi.org/10.1090/cln/017 |l UBM01 |p ZDB-138-AMN |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176979375685632 |
---|---|
any_adam_object | |
author | Zhang, Ping 1957- |
author_GND | (DE-588)1012212335 |
author_facet | Zhang, Ping 1957- |
author_role | aut |
author_sort | Zhang, Ping 1957- |
author_variant | p z pz |
building | Verbundindex |
bvnumber | BV043999377 |
classification_rvk | SK 540 UK 1200 |
collection | ZDB-138-AMN |
ctrlnum | (OCoLC)969664512 (DE-599)BVBBV043999377 |
dewey-full | 530.12/4 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.12/4 |
dewey-search | 530.12/4 |
dewey-sort | 3530.12 14 |
dewey-tens | 530 - Physics |
discipline | Physik Mathematik |
doi_str_mv | 10.1090/cln/017 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02916nmm a2200565zcb4500</leader><controlfield tag="001">BV043999377</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20231221 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">170116s2008 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781470431174</subfield><subfield code="9">978-1-4704-3117-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1090/cln/017</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)969664512</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043999377</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.12/4</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 540</subfield><subfield code="0">(DE-625)143245:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UK 1200</subfield><subfield code="0">(DE-625)145792:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35Q55</subfield><subfield code="2">msc/2000</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35S05</subfield><subfield code="2">msc/2000</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35C20</subfield><subfield code="2">msc/2000</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35Q40</subfield><subfield code="2">msc/2000</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Ping</subfield><subfield code="d">1957-</subfield><subfield code="0">(DE-588)1012212335</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Wigner measure and semiclassical limits of nonlinear Schrödinger equations</subfield><subfield code="c">Ping Zhang ; Academy of Mathematics and Systems Science, Chinese Academy of Sciences</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Providence, Rhode Island</subfield><subfield code="b">American Mathematical Society</subfield><subfield code="c">2008</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, New York</subfield><subfield code="b">Courant Institute of Mathematical Sciences</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Resource (viii, 197 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Courant lecture notes in mathematics</subfield><subfield code="v">17</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 193-197)</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Chapter 1. The classical WKB method - Chapter 2. Wigner measure - Chapter 3. The limit from the one-dimensional Schr odinger-Poisson to Vlasov-Poisson equations - Chapter 4. Semiclassical limit of Schr odinger-Poisson equations - Chapter 5. Semiclassical limit of the cubic Schr odinger equation in an exterior domain - Chapter 6. Incompressible and compressible limits of coupled systems of nonlinear Schr odinger equations - Chapter 7. High-frequency limit of the Helmholtz equation - Appendix A. Global solutions to (3.14) - Appendix B. Denseness of polynomials - Appendix C. Global existence of a solution to (5.1) - Appendix D. Global smooth solution to (6.1). - Mode of access : World Wide Web</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Schr odinger equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">WKB approximation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Nonlinear</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear theories</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Schrödinger-Gleichung</subfield><subfield code="0">(DE-588)4278277-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wigner-Verteilung</subfield><subfield code="0">(DE-588)4641021-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtlineare Schrödinger-Gleichung</subfield><subfield code="0">(DE-588)4278277-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Wigner-Verteilung</subfield><subfield code="0">(DE-588)4641021-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-8218-4701-5</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Courant lecture notes in mathematics</subfield><subfield code="v">17</subfield><subfield code="w">(DE-604)BV043997779</subfield><subfield code="9">17</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1090/cln/017</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-138-AMN</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029407357</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1090/cln/017</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-138-AMN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043999377 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:40:47Z |
institution | BVB |
isbn | 9781470431174 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029407357 |
oclc_num | 969664512 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM |
owner_facet | DE-19 DE-BY-UBM |
physical | 1 Online-Resource (viii, 197 Seiten) |
psigel | ZDB-138-AMN |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | American Mathematical Society Courant Institute of Mathematical Sciences |
record_format | marc |
series | Courant lecture notes in mathematics |
series2 | Courant lecture notes in mathematics |
spelling | Zhang, Ping 1957- (DE-588)1012212335 aut Wigner measure and semiclassical limits of nonlinear Schrödinger equations Ping Zhang ; Academy of Mathematics and Systems Science, Chinese Academy of Sciences Providence, Rhode Island American Mathematical Society 2008 New York, New York Courant Institute of Mathematical Sciences 2008 1 Online-Resource (viii, 197 Seiten) txt rdacontent c rdamedia cr rdacarrier Courant lecture notes in mathematics 17 Includes bibliographical references (p. 193-197) Chapter 1. The classical WKB method - Chapter 2. Wigner measure - Chapter 3. The limit from the one-dimensional Schr odinger-Poisson to Vlasov-Poisson equations - Chapter 4. Semiclassical limit of Schr odinger-Poisson equations - Chapter 5. Semiclassical limit of the cubic Schr odinger equation in an exterior domain - Chapter 6. Incompressible and compressible limits of coupled systems of nonlinear Schr odinger equations - Chapter 7. High-frequency limit of the Helmholtz equation - Appendix A. Global solutions to (3.14) - Appendix B. Denseness of polynomials - Appendix C. Global existence of a solution to (5.1) - Appendix D. Global smooth solution to (6.1). - Mode of access : World Wide Web Schr odinger equation WKB approximation Differential equations, Nonlinear Nonlinear theories Nichtlineare Schrödinger-Gleichung (DE-588)4278277-6 gnd rswk-swf Wigner-Verteilung (DE-588)4641021-1 gnd rswk-swf Nichtlineare Schrödinger-Gleichung (DE-588)4278277-6 s Wigner-Verteilung (DE-588)4641021-1 s DE-604 Erscheint auch als Druckausgabe 978-0-8218-4701-5 Courant lecture notes in mathematics 17 (DE-604)BV043997779 17 https://doi.org/10.1090/cln/017 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Zhang, Ping 1957- Wigner measure and semiclassical limits of nonlinear Schrödinger equations Courant lecture notes in mathematics Schr odinger equation WKB approximation Differential equations, Nonlinear Nonlinear theories Nichtlineare Schrödinger-Gleichung (DE-588)4278277-6 gnd Wigner-Verteilung (DE-588)4641021-1 gnd |
subject_GND | (DE-588)4278277-6 (DE-588)4641021-1 |
title | Wigner measure and semiclassical limits of nonlinear Schrödinger equations |
title_auth | Wigner measure and semiclassical limits of nonlinear Schrödinger equations |
title_exact_search | Wigner measure and semiclassical limits of nonlinear Schrödinger equations |
title_full | Wigner measure and semiclassical limits of nonlinear Schrödinger equations Ping Zhang ; Academy of Mathematics and Systems Science, Chinese Academy of Sciences |
title_fullStr | Wigner measure and semiclassical limits of nonlinear Schrödinger equations Ping Zhang ; Academy of Mathematics and Systems Science, Chinese Academy of Sciences |
title_full_unstemmed | Wigner measure and semiclassical limits of nonlinear Schrödinger equations Ping Zhang ; Academy of Mathematics and Systems Science, Chinese Academy of Sciences |
title_short | Wigner measure and semiclassical limits of nonlinear Schrödinger equations |
title_sort | wigner measure and semiclassical limits of nonlinear schrodinger equations |
topic | Schr odinger equation WKB approximation Differential equations, Nonlinear Nonlinear theories Nichtlineare Schrödinger-Gleichung (DE-588)4278277-6 gnd Wigner-Verteilung (DE-588)4641021-1 gnd |
topic_facet | Schr odinger equation WKB approximation Differential equations, Nonlinear Nonlinear theories Nichtlineare Schrödinger-Gleichung Wigner-Verteilung |
url | https://doi.org/10.1090/cln/017 |
volume_link | (DE-604)BV043997779 |
work_keys_str_mv | AT zhangping wignermeasureandsemiclassicallimitsofnonlinearschrodingerequations |