Nonlinear analysis on manifolds: Sobolev spaces and inequalities
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, New York
Courant Institute of Mathematical Sciences
2000
Providence, Rhode Island American Mathematical Society 2000 |
Schriftenreihe: | Courant lecture notes in mathematics
5 |
Schlagworte: | |
Online-Zugang: | UBM01 URL des Erstveröffentlichers |
Beschreibung: | Originally published: New York : Courant Institute of Mathematical Sciences, New York University, c1999. - Includes bibliographical references (page 283-290) Chapter 1. Elements of Riemannian geometry - Chapter 2. Sobolev spaces: The compact setting - Chapter 3. Sobolev spaces: The noncompact setting - Chapter 4. Best constants in the compact setting I - Chapter 5. Best constants in the compact setting II - Chapter 6. Optimal inequalities with constraints - Chapter 7. Best constants in the noncompact setting - Chapter 8. Euclidean-type Sobolev inequalities - Chapter 9. The influence of symmetries - Chapter 10. Manifolds with boundary. - Mode of access : World Wide Web |
Beschreibung: | 1 Online-Ressource (xii, 290 Seiten) |
ISBN: | 9781470417598 |
DOI: | 10.1090/cln/005 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043981746 | ||
003 | DE-604 | ||
005 | 20231221 | ||
007 | cr|uuu---uuuuu | ||
008 | 161229s2000 |||| o||u| ||||||eng d | ||
020 | |a 9781470417598 |c Online |9 978-1-4704-1759-8 | ||
024 | 7 | |a 10.1090/cln/005 |2 doi | |
035 | |a (OCoLC)968701991 | ||
035 | |a (DE-599)BVBBV043981746 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-19 |a DE-83 | ||
082 | 0 | |a 515/.782 | |
084 | |a SK 600 |0 (DE-625)143248: |2 rvk | ||
084 | |a 35J60 |2 msc/2000 | ||
084 | |a 58E35 |2 msc/2000 | ||
084 | |a 53C21 |2 msc/2000 | ||
084 | |a 58J60 |2 msc/2000 | ||
084 | |a 46E35 |2 msc/2000 | ||
084 | |a 58D15 |2 msc/2000 | ||
100 | 1 | |a Hebey, Emmanuel |d 1964- |0 (DE-588)173028551 |4 aut | |
245 | 1 | 0 | |a Nonlinear analysis on manifolds |b Sobolev spaces and inequalities |c Emmanuel Hebey ; Université de Cergy-Pontoise |
264 | 1 | |a New York, New York |b Courant Institute of Mathematical Sciences |c 2000 | |
264 | 1 | |a Providence, Rhode Island |b American Mathematical Society |c 2000 | |
300 | |a 1 Online-Ressource (xii, 290 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Courant lecture notes in mathematics |v 5 | |
500 | |a Originally published: New York : Courant Institute of Mathematical Sciences, New York University, c1999. - Includes bibliographical references (page 283-290) | ||
500 | |a Chapter 1. Elements of Riemannian geometry - Chapter 2. Sobolev spaces: The compact setting - Chapter 3. Sobolev spaces: The noncompact setting - Chapter 4. Best constants in the compact setting I - Chapter 5. Best constants in the compact setting II - Chapter 6. Optimal inequalities with constraints - Chapter 7. Best constants in the noncompact setting - Chapter 8. Euclidean-type Sobolev inequalities - Chapter 9. The influence of symmetries - Chapter 10. Manifolds with boundary. - Mode of access : World Wide Web | ||
650 | 4 | |a Sobolev spaces | |
650 | 4 | |a Inequalities (Mathematics) | |
650 | 4 | |a Riemannian manifolds | |
650 | 0 | 7 | |a Riemannscher Raum |0 (DE-588)4128295-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineare Analysis |0 (DE-588)4177490-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Sobolev-Raum |0 (DE-588)4055345-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ungleichung |0 (DE-588)4139098-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nichtlineare Analysis |0 (DE-588)4177490-5 |D s |
689 | 0 | 1 | |a Sobolev-Raum |0 (DE-588)4055345-0 |D s |
689 | 0 | 2 | |a Ungleichung |0 (DE-588)4139098-2 |D s |
689 | 0 | 3 | |a Riemannscher Raum |0 (DE-588)4128295-4 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-8218-2700-0 |
830 | 0 | |a Courant lecture notes in mathematics |v 5 |w (DE-604)BV043997779 |9 5 | |
856 | 4 | 0 | |u https://doi.org/10.1090/cln/005 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-138-AMN | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029390159 | ||
966 | e | |u https://doi.org/10.1090/cln/005 |l UBM01 |p ZDB-138-AMN |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176948840103936 |
---|---|
any_adam_object | |
author | Hebey, Emmanuel 1964- |
author_GND | (DE-588)173028551 |
author_facet | Hebey, Emmanuel 1964- |
author_role | aut |
author_sort | Hebey, Emmanuel 1964- |
author_variant | e h eh |
building | Verbundindex |
bvnumber | BV043981746 |
classification_rvk | SK 600 |
collection | ZDB-138-AMN |
ctrlnum | (OCoLC)968701991 (DE-599)BVBBV043981746 |
dewey-full | 515/.782 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.782 |
dewey-search | 515/.782 |
dewey-sort | 3515 3782 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1090/cln/005 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02980nmm a2200613zcb4500</leader><controlfield tag="001">BV043981746</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20231221 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161229s2000 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781470417598</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4704-1759-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1090/cln/005</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)968701991</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043981746</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.782</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 600</subfield><subfield code="0">(DE-625)143248:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35J60</subfield><subfield code="2">msc/2000</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58E35</subfield><subfield code="2">msc/2000</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53C21</subfield><subfield code="2">msc/2000</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58J60</subfield><subfield code="2">msc/2000</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">46E35</subfield><subfield code="2">msc/2000</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58D15</subfield><subfield code="2">msc/2000</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hebey, Emmanuel</subfield><subfield code="d">1964-</subfield><subfield code="0">(DE-588)173028551</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonlinear analysis on manifolds</subfield><subfield code="b">Sobolev spaces and inequalities</subfield><subfield code="c">Emmanuel Hebey ; Université de Cergy-Pontoise</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, New York</subfield><subfield code="b">Courant Institute of Mathematical Sciences</subfield><subfield code="c">2000</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Providence, Rhode Island</subfield><subfield code="b">American Mathematical Society</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xii, 290 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Courant lecture notes in mathematics</subfield><subfield code="v">5</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Originally published: New York : Courant Institute of Mathematical Sciences, New York University, c1999. - Includes bibliographical references (page 283-290)</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Chapter 1. Elements of Riemannian geometry - Chapter 2. Sobolev spaces: The compact setting - Chapter 3. Sobolev spaces: The noncompact setting - Chapter 4. Best constants in the compact setting I - Chapter 5. Best constants in the compact setting II - Chapter 6. Optimal inequalities with constraints - Chapter 7. Best constants in the noncompact setting - Chapter 8. Euclidean-type Sobolev inequalities - Chapter 9. The influence of symmetries - Chapter 10. Manifolds with boundary. - Mode of access : World Wide Web</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sobolev spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inequalities (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Riemannian manifolds</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Riemannscher Raum</subfield><subfield code="0">(DE-588)4128295-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Analysis</subfield><subfield code="0">(DE-588)4177490-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Sobolev-Raum</subfield><subfield code="0">(DE-588)4055345-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ungleichung</subfield><subfield code="0">(DE-588)4139098-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtlineare Analysis</subfield><subfield code="0">(DE-588)4177490-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Sobolev-Raum</subfield><subfield code="0">(DE-588)4055345-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Ungleichung</subfield><subfield code="0">(DE-588)4139098-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Riemannscher Raum</subfield><subfield code="0">(DE-588)4128295-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-8218-2700-0</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Courant lecture notes in mathematics</subfield><subfield code="v">5</subfield><subfield code="w">(DE-604)BV043997779</subfield><subfield code="9">5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1090/cln/005</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-138-AMN</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029390159</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1090/cln/005</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-138-AMN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043981746 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:40:18Z |
institution | BVB |
isbn | 9781470417598 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029390159 |
oclc_num | 968701991 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM DE-83 |
owner_facet | DE-19 DE-BY-UBM DE-83 |
physical | 1 Online-Ressource (xii, 290 Seiten) |
psigel | ZDB-138-AMN |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Courant Institute of Mathematical Sciences American Mathematical Society |
record_format | marc |
series | Courant lecture notes in mathematics |
series2 | Courant lecture notes in mathematics |
spelling | Hebey, Emmanuel 1964- (DE-588)173028551 aut Nonlinear analysis on manifolds Sobolev spaces and inequalities Emmanuel Hebey ; Université de Cergy-Pontoise New York, New York Courant Institute of Mathematical Sciences 2000 Providence, Rhode Island American Mathematical Society 2000 1 Online-Ressource (xii, 290 Seiten) txt rdacontent c rdamedia cr rdacarrier Courant lecture notes in mathematics 5 Originally published: New York : Courant Institute of Mathematical Sciences, New York University, c1999. - Includes bibliographical references (page 283-290) Chapter 1. Elements of Riemannian geometry - Chapter 2. Sobolev spaces: The compact setting - Chapter 3. Sobolev spaces: The noncompact setting - Chapter 4. Best constants in the compact setting I - Chapter 5. Best constants in the compact setting II - Chapter 6. Optimal inequalities with constraints - Chapter 7. Best constants in the noncompact setting - Chapter 8. Euclidean-type Sobolev inequalities - Chapter 9. The influence of symmetries - Chapter 10. Manifolds with boundary. - Mode of access : World Wide Web Sobolev spaces Inequalities (Mathematics) Riemannian manifolds Riemannscher Raum (DE-588)4128295-4 gnd rswk-swf Nichtlineare Analysis (DE-588)4177490-5 gnd rswk-swf Sobolev-Raum (DE-588)4055345-0 gnd rswk-swf Ungleichung (DE-588)4139098-2 gnd rswk-swf Nichtlineare Analysis (DE-588)4177490-5 s Sobolev-Raum (DE-588)4055345-0 s Ungleichung (DE-588)4139098-2 s Riemannscher Raum (DE-588)4128295-4 s DE-604 Erscheint auch als Druckausgabe 978-0-8218-2700-0 Courant lecture notes in mathematics 5 (DE-604)BV043997779 5 https://doi.org/10.1090/cln/005 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Hebey, Emmanuel 1964- Nonlinear analysis on manifolds Sobolev spaces and inequalities Courant lecture notes in mathematics Sobolev spaces Inequalities (Mathematics) Riemannian manifolds Riemannscher Raum (DE-588)4128295-4 gnd Nichtlineare Analysis (DE-588)4177490-5 gnd Sobolev-Raum (DE-588)4055345-0 gnd Ungleichung (DE-588)4139098-2 gnd |
subject_GND | (DE-588)4128295-4 (DE-588)4177490-5 (DE-588)4055345-0 (DE-588)4139098-2 |
title | Nonlinear analysis on manifolds Sobolev spaces and inequalities |
title_auth | Nonlinear analysis on manifolds Sobolev spaces and inequalities |
title_exact_search | Nonlinear analysis on manifolds Sobolev spaces and inequalities |
title_full | Nonlinear analysis on manifolds Sobolev spaces and inequalities Emmanuel Hebey ; Université de Cergy-Pontoise |
title_fullStr | Nonlinear analysis on manifolds Sobolev spaces and inequalities Emmanuel Hebey ; Université de Cergy-Pontoise |
title_full_unstemmed | Nonlinear analysis on manifolds Sobolev spaces and inequalities Emmanuel Hebey ; Université de Cergy-Pontoise |
title_short | Nonlinear analysis on manifolds |
title_sort | nonlinear analysis on manifolds sobolev spaces and inequalities |
title_sub | Sobolev spaces and inequalities |
topic | Sobolev spaces Inequalities (Mathematics) Riemannian manifolds Riemannscher Raum (DE-588)4128295-4 gnd Nichtlineare Analysis (DE-588)4177490-5 gnd Sobolev-Raum (DE-588)4055345-0 gnd Ungleichung (DE-588)4139098-2 gnd |
topic_facet | Sobolev spaces Inequalities (Mathematics) Riemannian manifolds Riemannscher Raum Nichtlineare Analysis Sobolev-Raum Ungleichung |
url | https://doi.org/10.1090/cln/005 |
volume_link | (DE-604)BV043997779 |
work_keys_str_mv | AT hebeyemmanuel nonlinearanalysisonmanifoldssobolevspacesandinequalities |