Analytic Theory of Global Bifurcation:
Rabinowitz's classical global bifurcation theory, which concerns the study in-the-large of parameter-dependent families of nonlinear equations, uses topological methods that address the problem of continuous parameter dependence of solutions by showing that there are connected sets of solutions...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, NJ
Princeton University Press
[2016]
|
Schriftenreihe: | Princeton Series in Applied Mathematics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Rabinowitz's classical global bifurcation theory, which concerns the study in-the-large of parameter-dependent families of nonlinear equations, uses topological methods that address the problem of continuous parameter dependence of solutions by showing that there are connected sets of solutions of global extent. Even when the operators are infinitely differentiable in all the variables and parameters, connectedness here cannot in general be replaced by path-connectedness. However, in the context of real-analyticity there is an alternative theory of global bifurcation due to Dancer, which offers a much stronger notion of parameter dependence. This book aims to develop from first principles Dancer's global bifurcation theory for one-parameter families of real-analytic operators in Banach spaces. It shows that there are globally defined continuous and locally real-analytic curves of solutions. In particular, in the real-analytic setting, local analysis can lead to global consequences--for example, as explained in detail here, those resulting from bifurcation from a simple eigenvalue. Included are accounts of analyticity and implicit function theorems in Banach spaces, classical results from the theory of finite-dimensional analytic varieties, and the links between these two and global existence theory. Laying the foundations for more extensive studies of real-analyticity in infinite-dimensional problems and illustrating the theory with examples, Analytic Theory of Global Bifurcation is intended for graduate students and researchers in pure and applied analysis |
Beschreibung: | Description based on online resource; title from PDF title page (publisher's Web site, viewed Nov. 7, 2016) |
Beschreibung: | 1 online resource |
ISBN: | 9781400884339 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043979338 | ||
003 | DE-604 | ||
005 | 20180307 | ||
007 | cr|uuu---uuuuu | ||
008 | 161227s2016 |||| o||u| ||||||eng d | ||
020 | |a 9781400884339 |9 978-1-4008-8433-9 | ||
024 | 7 | |a 10.1515/9781400884339 |2 doi | |
035 | |a (ZDB-23-DGG)9781400884339 | ||
035 | |a (OCoLC)1165488085 | ||
035 | |a (DE-599)BVBBV043979338 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
082 | 0 | |a 515/.35 |2 22 | |
100 | 1 | |a Buffoni, Boris |d 1965- |e Verfasser |0 (DE-588)1146433263 |4 aut | |
245 | 1 | 0 | |a Analytic Theory of Global Bifurcation |c Boris Buffoni, John Toland |
264 | 1 | |a Princeton, NJ |b Princeton University Press |c [2016] | |
264 | 4 | |c © 2003 | |
300 | |a 1 online resource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Princeton Series in Applied Mathematics | |
500 | |a Description based on online resource; title from PDF title page (publisher's Web site, viewed Nov. 7, 2016) | ||
520 | |a Rabinowitz's classical global bifurcation theory, which concerns the study in-the-large of parameter-dependent families of nonlinear equations, uses topological methods that address the problem of continuous parameter dependence of solutions by showing that there are connected sets of solutions of global extent. Even when the operators are infinitely differentiable in all the variables and parameters, connectedness here cannot in general be replaced by path-connectedness. However, in the context of real-analyticity there is an alternative theory of global bifurcation due to Dancer, which offers a much stronger notion of parameter dependence. This book aims to develop from first principles Dancer's global bifurcation theory for one-parameter families of real-analytic operators in Banach spaces. It shows that there are globally defined continuous and locally real-analytic curves of solutions. In particular, in the real-analytic setting, local analysis can lead to global consequences--for example, as explained in detail here, those resulting from bifurcation from a simple eigenvalue. Included are accounts of analyticity and implicit function theorems in Banach spaces, classical results from the theory of finite-dimensional analytic varieties, and the links between these two and global existence theory. Laying the foundations for more extensive studies of real-analyticity in infinite-dimensional problems and illustrating the theory with examples, Analytic Theory of Global Bifurcation is intended for graduate students and researchers in pure and applied analysis | ||
546 | |a In English | ||
650 | 4 | |a Bifurcation theory | |
650 | 0 | 7 | |a Globale Verzweigung |0 (DE-588)4374566-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Funktionalanalysis |0 (DE-588)4018916-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Globale Verzweigung |0 (DE-588)4374566-0 |D s |
689 | 0 | 1 | |a Funktionalanalysis |0 (DE-588)4018916-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Toland, John |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://www.degruyter.com/doi/book/10.1515/9781400884339 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029387775 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804176944340664320 |
---|---|
any_adam_object | |
author | Buffoni, Boris 1965- |
author_GND | (DE-588)1146433263 |
author_facet | Buffoni, Boris 1965- |
author_role | aut |
author_sort | Buffoni, Boris 1965- |
author_variant | b b bb |
building | Verbundindex |
bvnumber | BV043979338 |
collection | ZDB-23-DGG |
ctrlnum | (ZDB-23-DGG)9781400884339 (OCoLC)1165488085 (DE-599)BVBBV043979338 |
dewey-full | 515/.35 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.35 |
dewey-search | 515/.35 |
dewey-sort | 3515 235 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03294nmm a2200457zc 4500</leader><controlfield tag="001">BV043979338</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180307 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161227s2016 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400884339</subfield><subfield code="9">978-1-4008-8433-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781400884339</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9781400884339</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165488085</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043979338</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.35</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Buffoni, Boris</subfield><subfield code="d">1965-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1146433263</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analytic Theory of Global Bifurcation</subfield><subfield code="c">Boris Buffoni, John Toland</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, NJ</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">[2016]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Princeton Series in Applied Mathematics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (publisher's Web site, viewed Nov. 7, 2016)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Rabinowitz's classical global bifurcation theory, which concerns the study in-the-large of parameter-dependent families of nonlinear equations, uses topological methods that address the problem of continuous parameter dependence of solutions by showing that there are connected sets of solutions of global extent. Even when the operators are infinitely differentiable in all the variables and parameters, connectedness here cannot in general be replaced by path-connectedness. However, in the context of real-analyticity there is an alternative theory of global bifurcation due to Dancer, which offers a much stronger notion of parameter dependence. This book aims to develop from first principles Dancer's global bifurcation theory for one-parameter families of real-analytic operators in Banach spaces. It shows that there are globally defined continuous and locally real-analytic curves of solutions. In particular, in the real-analytic setting, local analysis can lead to global consequences--for example, as explained in detail here, those resulting from bifurcation from a simple eigenvalue. Included are accounts of analyticity and implicit function theorems in Banach spaces, classical results from the theory of finite-dimensional analytic varieties, and the links between these two and global existence theory. Laying the foundations for more extensive studies of real-analyticity in infinite-dimensional problems and illustrating the theory with examples, Analytic Theory of Global Bifurcation is intended for graduate students and researchers in pure and applied analysis</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bifurcation theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Globale Verzweigung</subfield><subfield code="0">(DE-588)4374566-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionalanalysis</subfield><subfield code="0">(DE-588)4018916-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Globale Verzweigung</subfield><subfield code="0">(DE-588)4374566-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Funktionalanalysis</subfield><subfield code="0">(DE-588)4018916-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Toland, John</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.degruyter.com/doi/book/10.1515/9781400884339</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029387775</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV043979338 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:40:14Z |
institution | BVB |
isbn | 9781400884339 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029387775 |
oclc_num | 1165488085 |
open_access_boolean | |
physical | 1 online resource |
psigel | ZDB-23-DGG |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | Princeton University Press |
record_format | marc |
series2 | Princeton Series in Applied Mathematics |
spelling | Buffoni, Boris 1965- Verfasser (DE-588)1146433263 aut Analytic Theory of Global Bifurcation Boris Buffoni, John Toland Princeton, NJ Princeton University Press [2016] © 2003 1 online resource txt rdacontent c rdamedia cr rdacarrier Princeton Series in Applied Mathematics Description based on online resource; title from PDF title page (publisher's Web site, viewed Nov. 7, 2016) Rabinowitz's classical global bifurcation theory, which concerns the study in-the-large of parameter-dependent families of nonlinear equations, uses topological methods that address the problem of continuous parameter dependence of solutions by showing that there are connected sets of solutions of global extent. Even when the operators are infinitely differentiable in all the variables and parameters, connectedness here cannot in general be replaced by path-connectedness. However, in the context of real-analyticity there is an alternative theory of global bifurcation due to Dancer, which offers a much stronger notion of parameter dependence. This book aims to develop from first principles Dancer's global bifurcation theory for one-parameter families of real-analytic operators in Banach spaces. It shows that there are globally defined continuous and locally real-analytic curves of solutions. In particular, in the real-analytic setting, local analysis can lead to global consequences--for example, as explained in detail here, those resulting from bifurcation from a simple eigenvalue. Included are accounts of analyticity and implicit function theorems in Banach spaces, classical results from the theory of finite-dimensional analytic varieties, and the links between these two and global existence theory. Laying the foundations for more extensive studies of real-analyticity in infinite-dimensional problems and illustrating the theory with examples, Analytic Theory of Global Bifurcation is intended for graduate students and researchers in pure and applied analysis In English Bifurcation theory Globale Verzweigung (DE-588)4374566-0 gnd rswk-swf Funktionalanalysis (DE-588)4018916-8 gnd rswk-swf Globale Verzweigung (DE-588)4374566-0 s Funktionalanalysis (DE-588)4018916-8 s 1\p DE-604 Toland, John Sonstige oth https://www.degruyter.com/doi/book/10.1515/9781400884339 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Buffoni, Boris 1965- Analytic Theory of Global Bifurcation Bifurcation theory Globale Verzweigung (DE-588)4374566-0 gnd Funktionalanalysis (DE-588)4018916-8 gnd |
subject_GND | (DE-588)4374566-0 (DE-588)4018916-8 |
title | Analytic Theory of Global Bifurcation |
title_auth | Analytic Theory of Global Bifurcation |
title_exact_search | Analytic Theory of Global Bifurcation |
title_full | Analytic Theory of Global Bifurcation Boris Buffoni, John Toland |
title_fullStr | Analytic Theory of Global Bifurcation Boris Buffoni, John Toland |
title_full_unstemmed | Analytic Theory of Global Bifurcation Boris Buffoni, John Toland |
title_short | Analytic Theory of Global Bifurcation |
title_sort | analytic theory of global bifurcation |
topic | Bifurcation theory Globale Verzweigung (DE-588)4374566-0 gnd Funktionalanalysis (DE-588)4018916-8 gnd |
topic_facet | Bifurcation theory Globale Verzweigung Funktionalanalysis |
url | https://www.degruyter.com/doi/book/10.1515/9781400884339 |
work_keys_str_mv | AT buffoniboris analytictheoryofglobalbifurcation AT tolandjohn analytictheoryofglobalbifurcation |