Real Submanifolds in Complex Space and Their Mappings:
This book presents many of the main developments of the past two decades in the study of real submanifolds in complex space, providing crucial background material for researchers and advanced graduate students. The techniques in this area borrow from real and complex analysis and partial differentia...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, NJ
Princeton University Press
[2016]
|
Schriftenreihe: | Princeton mathematical series
47 |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This book presents many of the main developments of the past two decades in the study of real submanifolds in complex space, providing crucial background material for researchers and advanced graduate students. The techniques in this area borrow from real and complex analysis and partial differential equations, as well as from differential, algebraic, and analytical geometry. In turn, these latter areas have been enriched over the years by the study of problems in several complex variables addressed here. The authors, M. Salah Baouendi, Peter Ebenfelt, and Linda Preiss Rothschild, include extensive preliminary material to make the book accessible to nonspecialists. One of the most important topics that the authors address here is the holomorphic extension of functions and mappings that satisfy the tangential Cauchy-Riemann equations on real submanifolds. They present the main results in this area with a novel and self-contained approach. The book also devotes considerable attention to the study of holomorphic mappings between real submanifolds, and proves finite determination of such mappings by their jets under some optimal assumptions. The authors also give a thorough comparison of the various nondegeneracy conditions for manifolds and mappings and present new geometric interpretations of these conditions. Throughout the book, Cauchy-Riemann vector fields and their orbits play a central role and are presented in a setting that is both general and elementary |
Beschreibung: | Description based on online resource; title from PDF title page (publisher's Web site, viewed Oct. 27, 2016) |
Beschreibung: | 1 Online-Ressource |
ISBN: | 9781400883967 |
DOI: | 10.1515/9781400883967 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043979320 | ||
003 | DE-604 | ||
005 | 20191021 | ||
007 | cr|uuu---uuuuu | ||
008 | 161227s2016 |||| o||u| ||||||eng d | ||
020 | |a 9781400883967 |9 978-1-4008-8396-7 | ||
024 | 7 | |a 10.1515/9781400883967 |2 doi | |
035 | |a (ZDB-23-DGG)9781400883967 | ||
035 | |a (OCoLC)951032147 | ||
035 | |a (DE-599)BVBBV043979320 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-83 | ||
082 | 0 | |a 516.362 |2 23 | |
100 | 1 | |a Baouendi, Salah |d 1937-2011 |0 (DE-588)171965264 |4 aut | |
245 | 1 | 0 | |a Real Submanifolds in Complex Space and Their Mappings |c Linda Preiss Rothschild, M. Salah Baouendi, Peter Ebenfelt |
264 | 1 | |a Princeton, NJ |b Princeton University Press |c [2016] | |
264 | 4 | |c © 1999 | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Princeton mathematical series |v 47 | |
500 | |a Description based on online resource; title from PDF title page (publisher's Web site, viewed Oct. 27, 2016) | ||
520 | |a This book presents many of the main developments of the past two decades in the study of real submanifolds in complex space, providing crucial background material for researchers and advanced graduate students. The techniques in this area borrow from real and complex analysis and partial differential equations, as well as from differential, algebraic, and analytical geometry. In turn, these latter areas have been enriched over the years by the study of problems in several complex variables addressed here. The authors, M. Salah Baouendi, Peter Ebenfelt, and Linda Preiss Rothschild, include extensive preliminary material to make the book accessible to nonspecialists. One of the most important topics that the authors address here is the holomorphic extension of functions and mappings that satisfy the tangential Cauchy-Riemann equations on real submanifolds. They present the main results in this area with a novel and self-contained approach. The book also devotes considerable attention to the study of holomorphic mappings between real submanifolds, and proves finite determination of such mappings by their jets under some optimal assumptions. The authors also give a thorough comparison of the various nondegeneracy conditions for manifolds and mappings and present new geometric interpretations of these conditions. Throughout the book, Cauchy-Riemann vector fields and their orbits play a central role and are presented in a setting that is both general and elementary | ||
650 | 4 | |a Functions of several complex variables | |
650 | 4 | |a Holomorphic mappings | |
650 | 4 | |a Submanifolds | |
650 | 0 | 7 | |a Untermannigfaltigkeit |0 (DE-588)4128503-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Holomorphe Abbildung |0 (DE-588)4160471-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mehrere komplexe Variable |0 (DE-588)4169285-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Untermannigfaltigkeit |0 (DE-588)4128503-7 |D s |
689 | 0 | 1 | |a Mehrere komplexe Variable |0 (DE-588)4169285-8 |D s |
689 | 0 | 2 | |a Holomorphe Abbildung |0 (DE-588)4160471-4 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Ebenfelt, Peter |d 1965- |0 (DE-588)130422908 |4 aut | |
700 | 1 | |a Rothschild, Linda Preiss |d 1945- |0 (DE-588)143186655 |4 aut | |
830 | 0 | |a Princeton mathematical series |v 47 |w (DE-604)BV045898993 |9 47 | |
856 | 4 | 0 | |u https://doi.org/10.1515/9781400883967?locatt=mode:legacy |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG |a ZDB-23-PMS | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029387757 |
Datensatz im Suchindex
_version_ | 1804176944307109888 |
---|---|
any_adam_object | |
author | Baouendi, Salah 1937-2011 Ebenfelt, Peter 1965- Rothschild, Linda Preiss 1945- |
author_GND | (DE-588)171965264 (DE-588)130422908 (DE-588)143186655 |
author_facet | Baouendi, Salah 1937-2011 Ebenfelt, Peter 1965- Rothschild, Linda Preiss 1945- |
author_role | aut aut aut |
author_sort | Baouendi, Salah 1937-2011 |
author_variant | s b sb p e pe l p r lp lpr |
building | Verbundindex |
bvnumber | BV043979320 |
collection | ZDB-23-DGG ZDB-23-PMS |
ctrlnum | (ZDB-23-DGG)9781400883967 (OCoLC)951032147 (DE-599)BVBBV043979320 |
dewey-full | 516.362 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.362 |
dewey-search | 516.362 |
dewey-sort | 3516.362 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1515/9781400883967 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03546nmm a2200517zcb4500</leader><controlfield tag="001">BV043979320</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20191021 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161227s2016 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400883967</subfield><subfield code="9">978-1-4008-8396-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781400883967</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9781400883967</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)951032147</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043979320</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.362</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Baouendi, Salah</subfield><subfield code="d">1937-2011</subfield><subfield code="0">(DE-588)171965264</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Real Submanifolds in Complex Space and Their Mappings</subfield><subfield code="c">Linda Preiss Rothschild, M. Salah Baouendi, Peter Ebenfelt</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, NJ</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">[2016]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Princeton mathematical series</subfield><subfield code="v">47</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (publisher's Web site, viewed Oct. 27, 2016)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book presents many of the main developments of the past two decades in the study of real submanifolds in complex space, providing crucial background material for researchers and advanced graduate students. The techniques in this area borrow from real and complex analysis and partial differential equations, as well as from differential, algebraic, and analytical geometry. In turn, these latter areas have been enriched over the years by the study of problems in several complex variables addressed here. The authors, M. Salah Baouendi, Peter Ebenfelt, and Linda Preiss Rothschild, include extensive preliminary material to make the book accessible to nonspecialists. One of the most important topics that the authors address here is the holomorphic extension of functions and mappings that satisfy the tangential Cauchy-Riemann equations on real submanifolds. They present the main results in this area with a novel and self-contained approach. The book also devotes considerable attention to the study of holomorphic mappings between real submanifolds, and proves finite determination of such mappings by their jets under some optimal assumptions. The authors also give a thorough comparison of the various nondegeneracy conditions for manifolds and mappings and present new geometric interpretations of these conditions. Throughout the book, Cauchy-Riemann vector fields and their orbits play a central role and are presented in a setting that is both general and elementary</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions of several complex variables</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Holomorphic mappings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Submanifolds</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Untermannigfaltigkeit</subfield><subfield code="0">(DE-588)4128503-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Holomorphe Abbildung</subfield><subfield code="0">(DE-588)4160471-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mehrere komplexe Variable</subfield><subfield code="0">(DE-588)4169285-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Untermannigfaltigkeit</subfield><subfield code="0">(DE-588)4128503-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mehrere komplexe Variable</subfield><subfield code="0">(DE-588)4169285-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Holomorphe Abbildung</subfield><subfield code="0">(DE-588)4160471-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ebenfelt, Peter</subfield><subfield code="d">1965-</subfield><subfield code="0">(DE-588)130422908</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rothschild, Linda Preiss</subfield><subfield code="d">1945-</subfield><subfield code="0">(DE-588)143186655</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Princeton mathematical series</subfield><subfield code="v">47</subfield><subfield code="w">(DE-604)BV045898993</subfield><subfield code="9">47</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9781400883967?locatt=mode:legacy</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-23-PMS</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029387757</subfield></datafield></record></collection> |
id | DE-604.BV043979320 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:40:13Z |
institution | BVB |
isbn | 9781400883967 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029387757 |
oclc_num | 951032147 |
open_access_boolean | |
owner | DE-83 |
owner_facet | DE-83 |
physical | 1 Online-Ressource |
psigel | ZDB-23-DGG ZDB-23-PMS |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | Princeton University Press |
record_format | marc |
series | Princeton mathematical series |
series2 | Princeton mathematical series |
spelling | Baouendi, Salah 1937-2011 (DE-588)171965264 aut Real Submanifolds in Complex Space and Their Mappings Linda Preiss Rothschild, M. Salah Baouendi, Peter Ebenfelt Princeton, NJ Princeton University Press [2016] © 1999 1 Online-Ressource txt rdacontent c rdamedia cr rdacarrier Princeton mathematical series 47 Description based on online resource; title from PDF title page (publisher's Web site, viewed Oct. 27, 2016) This book presents many of the main developments of the past two decades in the study of real submanifolds in complex space, providing crucial background material for researchers and advanced graduate students. The techniques in this area borrow from real and complex analysis and partial differential equations, as well as from differential, algebraic, and analytical geometry. In turn, these latter areas have been enriched over the years by the study of problems in several complex variables addressed here. The authors, M. Salah Baouendi, Peter Ebenfelt, and Linda Preiss Rothschild, include extensive preliminary material to make the book accessible to nonspecialists. One of the most important topics that the authors address here is the holomorphic extension of functions and mappings that satisfy the tangential Cauchy-Riemann equations on real submanifolds. They present the main results in this area with a novel and self-contained approach. The book also devotes considerable attention to the study of holomorphic mappings between real submanifolds, and proves finite determination of such mappings by their jets under some optimal assumptions. The authors also give a thorough comparison of the various nondegeneracy conditions for manifolds and mappings and present new geometric interpretations of these conditions. Throughout the book, Cauchy-Riemann vector fields and their orbits play a central role and are presented in a setting that is both general and elementary Functions of several complex variables Holomorphic mappings Submanifolds Untermannigfaltigkeit (DE-588)4128503-7 gnd rswk-swf Holomorphe Abbildung (DE-588)4160471-4 gnd rswk-swf Mehrere komplexe Variable (DE-588)4169285-8 gnd rswk-swf Untermannigfaltigkeit (DE-588)4128503-7 s Mehrere komplexe Variable (DE-588)4169285-8 s Holomorphe Abbildung (DE-588)4160471-4 s DE-604 Ebenfelt, Peter 1965- (DE-588)130422908 aut Rothschild, Linda Preiss 1945- (DE-588)143186655 aut Princeton mathematical series 47 (DE-604)BV045898993 47 https://doi.org/10.1515/9781400883967?locatt=mode:legacy Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Baouendi, Salah 1937-2011 Ebenfelt, Peter 1965- Rothschild, Linda Preiss 1945- Real Submanifolds in Complex Space and Their Mappings Princeton mathematical series Functions of several complex variables Holomorphic mappings Submanifolds Untermannigfaltigkeit (DE-588)4128503-7 gnd Holomorphe Abbildung (DE-588)4160471-4 gnd Mehrere komplexe Variable (DE-588)4169285-8 gnd |
subject_GND | (DE-588)4128503-7 (DE-588)4160471-4 (DE-588)4169285-8 |
title | Real Submanifolds in Complex Space and Their Mappings |
title_auth | Real Submanifolds in Complex Space and Their Mappings |
title_exact_search | Real Submanifolds in Complex Space and Their Mappings |
title_full | Real Submanifolds in Complex Space and Their Mappings Linda Preiss Rothschild, M. Salah Baouendi, Peter Ebenfelt |
title_fullStr | Real Submanifolds in Complex Space and Their Mappings Linda Preiss Rothschild, M. Salah Baouendi, Peter Ebenfelt |
title_full_unstemmed | Real Submanifolds in Complex Space and Their Mappings Linda Preiss Rothschild, M. Salah Baouendi, Peter Ebenfelt |
title_short | Real Submanifolds in Complex Space and Their Mappings |
title_sort | real submanifolds in complex space and their mappings |
topic | Functions of several complex variables Holomorphic mappings Submanifolds Untermannigfaltigkeit (DE-588)4128503-7 gnd Holomorphe Abbildung (DE-588)4160471-4 gnd Mehrere komplexe Variable (DE-588)4169285-8 gnd |
topic_facet | Functions of several complex variables Holomorphic mappings Submanifolds Untermannigfaltigkeit Holomorphe Abbildung Mehrere komplexe Variable |
url | https://doi.org/10.1515/9781400883967?locatt=mode:legacy |
volume_link | (DE-604)BV045898993 |
work_keys_str_mv | AT baouendisalah realsubmanifoldsincomplexspaceandtheirmappings AT ebenfeltpeter realsubmanifoldsincomplexspaceandtheirmappings AT rothschildlindapreiss realsubmanifoldsincomplexspaceandtheirmappings |