Cohomological Induction and Unitary Representations:
This book offers a systematic treatment--the first in book form--of the development and use of cohomological induction to construct unitary representations. George Mackey introduced induction in 1950 as a real analysis construction for passing from a unitary representation of a closed subgroup of a...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, NJ
Princeton University Press
[2016]
|
Schriftenreihe: | Princeton mathematical series
45 |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This book offers a systematic treatment--the first in book form--of the development and use of cohomological induction to construct unitary representations. George Mackey introduced induction in 1950 as a real analysis construction for passing from a unitary representation of a closed subgroup of a locally compact group to a unitary representation of the whole group. Later a parallel construction using complex analysis and its associated co-homology theories grew up as a result of work by Borel, Weil, Harish-Chandra, Bott, Langlands, Kostant, and Schmid. Cohomological induction, introduced by Zuckerman, is an algebraic analog that is technically more manageable than the complex-analysis construction and leads to a large repertory of irreducible unitary representations of reductive Lie groups. The book, which is accessible to students beyond the first year of graduate school, will interest mathematicians and physicists who want to learn about and take advantage of the algebraic side of the representation theory of Lie groups. Cohomological Induction and Unitary Representations develops the necessary background in representation theory and includes an introductory chapter of motivation, a thorough treatment of the "translation principle," and four appendices on algebra and analysis |
Beschreibung: | Description based on online resource; title from PDF title page (publisher's Web site, viewed Oct. 27, 2016) |
Beschreibung: | 1 Online-Ressource |
ISBN: | 9781400883936 |
DOI: | 10.1515/9781400883936 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043979318 | ||
003 | DE-604 | ||
005 | 20191021 | ||
007 | cr|uuu---uuuuu | ||
008 | 161227s2016 |||| o||u| ||||||eng d | ||
020 | |a 9781400883936 |9 978-1-4008-8393-6 | ||
024 | 7 | |a 10.1515/9781400883936 |2 doi | |
035 | |a (ZDB-23-DGG)9781400883936 | ||
035 | |a (OCoLC)948780948 | ||
035 | |a (DE-599)BVBBV043979318 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-83 | ||
082 | 0 | |a 512 |2 23 | |
084 | |a SK 340 |0 (DE-625)143232: |2 rvk | ||
084 | |a SK 350 |0 (DE-625)143233: |2 rvk | ||
100 | 1 | |a Knapp, Anthony W. |d 1941- |0 (DE-588)132959690 |4 aut | |
245 | 1 | 0 | |a Cohomological Induction and Unitary Representations |c Anthony W. Knapp, David A. Vogan |
264 | 1 | |a Princeton, NJ |b Princeton University Press |c [2016] | |
264 | 4 | |c © 1995 | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Princeton mathematical series |v 45 | |
500 | |a Description based on online resource; title from PDF title page (publisher's Web site, viewed Oct. 27, 2016) | ||
520 | |a This book offers a systematic treatment--the first in book form--of the development and use of cohomological induction to construct unitary representations. George Mackey introduced induction in 1950 as a real analysis construction for passing from a unitary representation of a closed subgroup of a locally compact group to a unitary representation of the whole group. Later a parallel construction using complex analysis and its associated co-homology theories grew up as a result of work by Borel, Weil, Harish-Chandra, Bott, Langlands, Kostant, and Schmid. Cohomological induction, introduced by Zuckerman, is an algebraic analog that is technically more manageable than the complex-analysis construction and leads to a large repertory of irreducible unitary representations of reductive Lie groups. The book, which is accessible to students beyond the first year of graduate school, will interest mathematicians and physicists who want to learn about and take advantage of the algebraic side of the representation theory of Lie groups. Cohomological Induction and Unitary Representations develops the necessary background in representation theory and includes an introductory chapter of motivation, a thorough treatment of the "translation principle," and four appendices on algebra and analysis | ||
650 | 4 | |a Harmonic analysis | |
650 | 4 | |a Homology theory | |
650 | 4 | |a Representations of groups | |
650 | 4 | |a Semisimple Lie groups | |
650 | 0 | 7 | |a Halbeinfache Lie-Gruppe |0 (DE-588)4122188-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Homologietheorie |0 (DE-588)4141714-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Darstellungstheorie |0 (DE-588)4148816-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Harmonische Analyse |0 (DE-588)4023453-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Halbeinfache Lie-Gruppe |0 (DE-588)4122188-6 |D s |
689 | 0 | 1 | |a Darstellungstheorie |0 (DE-588)4148816-7 |D s |
689 | 0 | 2 | |a Homologietheorie |0 (DE-588)4141714-8 |D s |
689 | 0 | 3 | |a Harmonische Analyse |0 (DE-588)4023453-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Vogan, David A. |d 1954- |0 (DE-588)172435285 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 0-691-03756-6 |
830 | 0 | |a Princeton mathematical series |v 45 |w (DE-604)BV045898993 |9 45 | |
856 | 4 | 0 | |u https://doi.org/10.1515/9781400883936?locatt=mode:legacy |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-PMS |a ZDB-23-DGG | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029387755 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804176944303964160 |
---|---|
any_adam_object | |
author | Knapp, Anthony W. 1941- Vogan, David A. 1954- |
author_GND | (DE-588)132959690 (DE-588)172435285 |
author_facet | Knapp, Anthony W. 1941- Vogan, David A. 1954- |
author_role | aut aut |
author_sort | Knapp, Anthony W. 1941- |
author_variant | a w k aw awk d a v da dav |
building | Verbundindex |
bvnumber | BV043979318 |
classification_rvk | SK 340 SK 350 |
collection | ZDB-23-PMS ZDB-23-DGG |
ctrlnum | (ZDB-23-DGG)9781400883936 (OCoLC)948780948 (DE-599)BVBBV043979318 |
dewey-full | 512 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512 |
dewey-search | 512 |
dewey-sort | 3512 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1515/9781400883936 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03640nmm a2200589zcb4500</leader><controlfield tag="001">BV043979318</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20191021 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161227s2016 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400883936</subfield><subfield code="9">978-1-4008-8393-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781400883936</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9781400883936</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)948780948</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043979318</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 350</subfield><subfield code="0">(DE-625)143233:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Knapp, Anthony W.</subfield><subfield code="d">1941-</subfield><subfield code="0">(DE-588)132959690</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Cohomological Induction and Unitary Representations</subfield><subfield code="c">Anthony W. Knapp, David A. Vogan</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, NJ</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">[2016]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Princeton mathematical series</subfield><subfield code="v">45</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (publisher's Web site, viewed Oct. 27, 2016)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book offers a systematic treatment--the first in book form--of the development and use of cohomological induction to construct unitary representations. George Mackey introduced induction in 1950 as a real analysis construction for passing from a unitary representation of a closed subgroup of a locally compact group to a unitary representation of the whole group. Later a parallel construction using complex analysis and its associated co-homology theories grew up as a result of work by Borel, Weil, Harish-Chandra, Bott, Langlands, Kostant, and Schmid. Cohomological induction, introduced by Zuckerman, is an algebraic analog that is technically more manageable than the complex-analysis construction and leads to a large repertory of irreducible unitary representations of reductive Lie groups. The book, which is accessible to students beyond the first year of graduate school, will interest mathematicians and physicists who want to learn about and take advantage of the algebraic side of the representation theory of Lie groups. Cohomological Induction and Unitary Representations develops the necessary background in representation theory and includes an introductory chapter of motivation, a thorough treatment of the "translation principle," and four appendices on algebra and analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Harmonic analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homology theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Representations of groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Semisimple Lie groups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Halbeinfache Lie-Gruppe</subfield><subfield code="0">(DE-588)4122188-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Homologietheorie</subfield><subfield code="0">(DE-588)4141714-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Harmonische Analyse</subfield><subfield code="0">(DE-588)4023453-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Halbeinfache Lie-Gruppe</subfield><subfield code="0">(DE-588)4122188-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Homologietheorie</subfield><subfield code="0">(DE-588)4141714-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Harmonische Analyse</subfield><subfield code="0">(DE-588)4023453-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vogan, David A.</subfield><subfield code="d">1954-</subfield><subfield code="0">(DE-588)172435285</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">0-691-03756-6</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Princeton mathematical series</subfield><subfield code="v">45</subfield><subfield code="w">(DE-604)BV045898993</subfield><subfield code="9">45</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9781400883936?locatt=mode:legacy</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-PMS</subfield><subfield code="a">ZDB-23-DGG</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029387755</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV043979318 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:40:13Z |
institution | BVB |
isbn | 9781400883936 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029387755 |
oclc_num | 948780948 |
open_access_boolean | |
owner | DE-83 |
owner_facet | DE-83 |
physical | 1 Online-Ressource |
psigel | ZDB-23-PMS ZDB-23-DGG |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | Princeton University Press |
record_format | marc |
series | Princeton mathematical series |
series2 | Princeton mathematical series |
spelling | Knapp, Anthony W. 1941- (DE-588)132959690 aut Cohomological Induction and Unitary Representations Anthony W. Knapp, David A. Vogan Princeton, NJ Princeton University Press [2016] © 1995 1 Online-Ressource txt rdacontent c rdamedia cr rdacarrier Princeton mathematical series 45 Description based on online resource; title from PDF title page (publisher's Web site, viewed Oct. 27, 2016) This book offers a systematic treatment--the first in book form--of the development and use of cohomological induction to construct unitary representations. George Mackey introduced induction in 1950 as a real analysis construction for passing from a unitary representation of a closed subgroup of a locally compact group to a unitary representation of the whole group. Later a parallel construction using complex analysis and its associated co-homology theories grew up as a result of work by Borel, Weil, Harish-Chandra, Bott, Langlands, Kostant, and Schmid. Cohomological induction, introduced by Zuckerman, is an algebraic analog that is technically more manageable than the complex-analysis construction and leads to a large repertory of irreducible unitary representations of reductive Lie groups. The book, which is accessible to students beyond the first year of graduate school, will interest mathematicians and physicists who want to learn about and take advantage of the algebraic side of the representation theory of Lie groups. Cohomological Induction and Unitary Representations develops the necessary background in representation theory and includes an introductory chapter of motivation, a thorough treatment of the "translation principle," and four appendices on algebra and analysis Harmonic analysis Homology theory Representations of groups Semisimple Lie groups Halbeinfache Lie-Gruppe (DE-588)4122188-6 gnd rswk-swf Homologietheorie (DE-588)4141714-8 gnd rswk-swf Darstellungstheorie (DE-588)4148816-7 gnd rswk-swf Harmonische Analyse (DE-588)4023453-8 gnd rswk-swf Halbeinfache Lie-Gruppe (DE-588)4122188-6 s Darstellungstheorie (DE-588)4148816-7 s Homologietheorie (DE-588)4141714-8 s Harmonische Analyse (DE-588)4023453-8 s 1\p DE-604 Vogan, David A. 1954- (DE-588)172435285 aut Erscheint auch als Druck-Ausgabe 0-691-03756-6 Princeton mathematical series 45 (DE-604)BV045898993 45 https://doi.org/10.1515/9781400883936?locatt=mode:legacy Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Knapp, Anthony W. 1941- Vogan, David A. 1954- Cohomological Induction and Unitary Representations Princeton mathematical series Harmonic analysis Homology theory Representations of groups Semisimple Lie groups Halbeinfache Lie-Gruppe (DE-588)4122188-6 gnd Homologietheorie (DE-588)4141714-8 gnd Darstellungstheorie (DE-588)4148816-7 gnd Harmonische Analyse (DE-588)4023453-8 gnd |
subject_GND | (DE-588)4122188-6 (DE-588)4141714-8 (DE-588)4148816-7 (DE-588)4023453-8 |
title | Cohomological Induction and Unitary Representations |
title_auth | Cohomological Induction and Unitary Representations |
title_exact_search | Cohomological Induction and Unitary Representations |
title_full | Cohomological Induction and Unitary Representations Anthony W. Knapp, David A. Vogan |
title_fullStr | Cohomological Induction and Unitary Representations Anthony W. Knapp, David A. Vogan |
title_full_unstemmed | Cohomological Induction and Unitary Representations Anthony W. Knapp, David A. Vogan |
title_short | Cohomological Induction and Unitary Representations |
title_sort | cohomological induction and unitary representations |
topic | Harmonic analysis Homology theory Representations of groups Semisimple Lie groups Halbeinfache Lie-Gruppe (DE-588)4122188-6 gnd Homologietheorie (DE-588)4141714-8 gnd Darstellungstheorie (DE-588)4148816-7 gnd Harmonische Analyse (DE-588)4023453-8 gnd |
topic_facet | Harmonic analysis Homology theory Representations of groups Semisimple Lie groups Halbeinfache Lie-Gruppe Homologietheorie Darstellungstheorie Harmonische Analyse |
url | https://doi.org/10.1515/9781400883936?locatt=mode:legacy |
volume_link | (DE-604)BV045898993 |
work_keys_str_mv | AT knappanthonyw cohomologicalinductionandunitaryrepresentations AT vogandavida cohomologicalinductionandunitaryrepresentations |