Computational materials science: an introduction
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boca Raton
CRC Press, Taylor & Francis
2017
|
Ausgabe: | Second edition |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | xxiii, 351 Seiten Illustrationen, Diagramme |
ISBN: | 9781498749732 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV043977992 | ||
003 | DE-604 | ||
005 | 20170203 | ||
007 | t | ||
008 | 161223s2017 xxua||| |||| 00||| eng d | ||
010 | |a 016025825 | ||
020 | |a 9781498749732 |9 978-1-4987-4973-2 | ||
035 | |a (OCoLC)973159676 | ||
035 | |a (DE-599)BVBBV043977992 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-29T | ||
050 | 0 | |a TA404.23 | |
082 | 0 | |a 620.1/10113 |2 23 | |
100 | 1 | |a Lee, June Gunn |e Verfasser |4 aut | |
245 | 1 | 0 | |a Computational materials science |b an introduction |c June Gunn Lee |
250 | |a Second edition | ||
264 | 1 | |a Boca Raton |b CRC Press, Taylor & Francis |c 2017 | |
300 | |a xxiii, 351 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
650 | 4 | |a Datenverarbeitung | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Materials |x Mathematical models | |
650 | 4 | |a Materials |x Data processing | |
650 | 4 | |a Molecular dynamics |x Mathematics | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029386437&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-029386437 |
Datensatz im Suchindex
_version_ | 1804176942970175488 |
---|---|
adam_text | Titel: Computational materials science
Autor: Lee, June Gunn
Jahr: 2017
Contents
Preface...............................................................................................................xix
Author............................................................................................................xxiii
Chapter 1 Introduction..................................................................................1
1.1 Computational materials science..........................................................1
1.1.1 Human beings versus matter...................................................1
1.1.2 Computational materials science............................................3
1.1.2.1 Goals...........................................................................3
1.1.2.2 Our approach.............................................................3
1.2 Methods in computational materials science......................................4
1.2.1 Basic procedures of computational materials science..........5
1.2.2 Finite element analysis..............................................................5
1.2.3 Monte Carlo method.................................................................6
1.2.4 Molecular dynamics..................................................................7
1.2.5 First-principles methods (ab initio methods)..........................7
1.2.6 Remarks......................................................................................7
1.3 Computers................................................................................................8
Reference.............................................................................................................9
Chapter 2 Molecular dynamics.................................................................11
2.1 Introduction............................................................................................12
2.1.1 Atomic model in MD...............................................................12
2.1.2 Classical mechanics.................................................................13
2.1.3 Molecular dynamics................................................................14
2.2 Potentials.................................................................................................15
2.2.1 Pair potentials..........................................................................17
2.2.2 Embedded atom method potentials......................................19
2.2.3 Tersoff potential.......................................................................22
2.2.4 Potentials for ionic solids........................................................23
2.2.5 Reactive force field potentials................................................24
vii
viii Contents
2.3 Solutions for Newton s equations of motion......................................24
2.3.1 N-atom system..........................................................................24
2.3.2 Verlet algorithm.......................................................................26
2.3.3 Velocity Verlet algorithm........................................................27
2.3.4 Predictor-corrector algorithm...............................................27
2.4 Initialization...........................................................................................29
2.4.1 Pre-setups.................................................................................29
2.4.1.1 Potential cutoff........................................................29
2.4.1.2 Periodic boundary conditions...............................31
2.4.1.3 Neighbor lists..........................................................32
2.4.2 Initialization.............................................................................32
2.4.2.1 Number of atoms (system size).............................33
2.4.2.2 Initial positions and velocities..............................33
2.4.2.3 Timestep...................................................................33
2.4.2.4 Total simulation time.............................................34
2.4.2.5 Type of ensemble....................................................34
2.5 Integration/equilibration......................................................................36
2.5.1 Temperature and pressure control........................................36
2.5.2 Minimization in a static MD run..........................................37
2.5.2.1 Steepest-descent method.......................................37
2.5.2.2 Conjugate gradients method.................................38
2.6 Data production.....................................................................................38
2.6.1 Run analysis.............................................................................38
2.6.1.1 Conservation of energy..........................................38
2.6.1.2 Confirmation of global minimum........................39
2.6.1.3 Time averages under the ergodic hypothesis.....39
2.6.1.4 Errors........................................................................40
2.6.2 Energies....................................................................................40
2.6.3 Structural properties...............................................................41
2.6.3.1 Equilibrium lattice constant, cohesive energy.... 41
2.6.3.2 Bulk modulus..........................................................41
2.6.3.3 Thermal expansion coefficient..............................42
2.6.3.4 Radial distribution function..................................42
2.6.4 Mean-square displacement....................................................43
2.6.5 Energetics, thermodynamic properties, and others...........44
Homework........................................................................................................44
References..........................................................................................................45
Further reading.................................................................................................46
Chapter 3 MD exercises with XMD and LAMMPS.............................47
3.1 Potential curve of A1..............................................................................47
3.1.1 Input files..................................................................................48
3.1.1.1 Run file.....................................................................48
3.1.1.2 Potential file.............................................................49
Contents ix
3.1.2 Run........................................................................................50
3.1.3 Results...................................................................................50
3.1.3.1 Potential energy curve.......................................51
3.2 Melting of Ni cluster............................................................................52
3.2.1 Run file.................................................................................52
3.2.2 Results...................................................................................53
3.2.2.1 Visualization with MDL ChimeSP6.................54
3.3 Sintering of Ni nanoparticles.............................................................55
3.3.1 Input file...............................................................................55
3.3.2 Results...................................................................................57
3.4 Speed distribution of Ar gas: A computer experiment..................58
3.4.1 Input file...............................................................................60
3.4.2 Results...................................................................................61
3.5 SiC deposition on Si(001).....................................................................62
3.5.1 Input file...............................................................................62
3.5.2 Results...................................................................................65
3.6 Yield mechanism of an Au nanowire...............................................66
3.6.1 Input file...............................................................................67
3.6.2 Results...................................................................................68
3.6.2.1 Snapshots.............................................................68
3.6.3 Conclusions..........................................................................69
3.7 Nanodroplet of water wrapped by a graphene nanoribbon.........69
3.7.1 Input files..............................................................................69
3.7.1.1 Positions file (data.C-H20)................................70
3.7.1.2 Input file..............................................................71
3.7.2 Results...................................................................................72
3.7.3 Conclusions..........................................................................73
3.8 Carbon nanotube tension...................................................................74
3.8.1 Introduction.........................................................................74
3.8.2 Input file...............................................................................75
3.8.3 readdata.CNT.......................................................................76
3.8.4 CH.old.airebo.......................................................................77
3.8.5 Results...................................................................................78
3.9 Si-tension...............................................................................................79
3.9.1 Introduction.........................................................................79
3.9.2 Input file...............................................................................79
3.9.3 Results...................................................................................82
3.10 Si-CNT composite under tension......................................................83
3.10.1 Introduction.........................................................................83
3.10.2 Potentials..............................................................................85
3.10.3 Input files..............................................................................85
3.10.4 Run........................................................................................89
3.10.5 Results..................................................................................89
3.10.6 Conclusions..........................................................................90
X
Contents
3.11 Zr02-Y203-MSD....................................................................................91
3.11.1 Introduction..........................................................................91
3.11.2 Input files..............................................................................92
3.11.3 Run........................................................................................94
3.11.4 Results...................................................................................94
Homework........................................................................................................95
References..........................................................................................................96
Chapter 4 First-principles methods..........................................................99
4.1 Quantum mechanics: The beginning.............................................100
4.1.1 Niels Bohr and the quantum nature of electrons..........101
4.1.2 De Broglie and the dual nature of electrons..................103
4.1.3 Schrodinger and the wave equation...............................104
4.1.4 Heisenberg and the uncertain nature of electrons........105
4.1.5 Remarks...............................................................................106
4.2 Schrodinger wave equation..............................................................107
4.2.1 Simplifying the problem...................................................107
4.2.1.1 Forget about gravity, relativity, and time......107
4.2.1.2 Forget about nuclei and spin...........................108
4.2.1.3 Forget about the excited states........................109
4.2.1.4 Use of atomic units...........................................109
4.2.2 Time-independent electronic wave equation................109
4.2.3 Energy operator: Hamiltonian H.....................................110
4.2.4 Waves and wave function.................................................112
4.2.4.1 Plane wave..........................................................113
4.2.4.2 Standing wave....................................................114
4.2.4.3 Superposition principle of waves....................114
4.2.4.4 Indistinguishability of electrons.....................115
4.2.5 Energy E...............................................................................115
4.2.6 Solutions of Schrodinger wave equation: An
electron in a well.................................................................116
4.2.6.1 An electron in a one-dimensional infinite
well......................................................................116
4.2.6.2 An electron in a one-dimensional well
with a finite potential........................................119
4.2.6.3 Hydrogen atom..................................................119
4.2.6.4 Degenerate states..............................................120
4.3 Early first-principles calculations....................................................120
4.3.1 n-electron problem............................................................120
4.3.2 Hartree method: One-electron model............................121
4.3.3 Hartree-Fock method.......................................................122
4.3.3.1 Expression for TTr)...........................................122
4.3.3.2 Orthonormality of wave functions................123
4.3.3.3 Expression for E................................................124
Contents xi
4.3.3.4 Calculation for E...................................................126
4.3.3.5 Variational approach to the search for the
ground-state energy.............................................127
4.3.3.6 Self-consistent procedure.....................................127
4.3.3.7 Remarks..................................................................128
Homework......................................................................................................128
References........................................................................................................129
Further reading...............................................................................................129
Chapter 5 Density functional theory.....................................................131
5.1 Introduction..........................................................................................132
5.1.1 Electron density.....................................................................133
5.1.1.1 Electron density in DFT.......................................135
5.1.2 Hohenberg-Kohn theorems.................................................135
5.1.2.1 Electron density as central player.......................135
5.1.2.2 Search for the ground-state energy....................136
5.2 Kohn-Sham approach.........................................................................138
5.2.1 One-electron representations...............................................138
5.2.2 One-electron system replacing n-electron system............139
5.3 Kohn-Sham equations........................................................................140
5.3.1 Energy terms...........................................................................141
5.3.1.1 Kinetic energy........................................................141
5.3.1.2 External energy.....................................................142
5.3.1.3 Hartree energy......................................................142
5.3.1.4 Exchange-correlation energy..............................143
5.3.1.5 Magnitudes of each energy term........................144
5.3.2 Functional derivatives...........................................................145
5.3.3 Kohn-Sham equations..........................................................147
5.3.3.1 KS orbitals..............................................................148
5.3.3.2 KS eigenvalues.......................................................149
5.4 Exchange-correlation functionals.....................................................149
5.4.1 Exchange-correlation hole....................................................150
5.4.1.1 Exchange hole........................................................151
5.4.1.2 Correlation hole.....................................................152
5.4.1.3 Exchange-correlation hole...................................152
5.4.2 Local density approximation...............................................153
5.4.2.1 Homogeneous electron gas.................................154
5.4.2.2 Exchange energy...................................................154
5.4.2.3 Correlation energy................................................154
5.4.2.4 XC energy...............................................................155
5.4.2.5 Remarks..................................................................156
5.4.3 Generalized gradient approximation.................................156
5.4.3.1 PW91.......................................................................158
5.4.3.2 PBE..........................................................................158
xii Contents
5.4.4 Other XC functionals............................................................159
5.4.5 Remarks..................................................................................160
5.4.5.1 General trends of GGA........................................160
5.4.5.2 Limitations of GGA: Strongly correlated
systems....................................................................161
5.4.5.3 Limitations of GGA: Band gap
underestimation.....................................................161
5.5 Solving Kohn-Sham equations..........................................................162
5.5.1 Introduction.............................................................................162
5.5.1.1 Self-consistency......................................................162
5.5.1.2 Variational principle.............................................163
5.5.1.3 Constraints.............................................................163
5.5.2 Direct diagonalization..........................................................164
5.5.3 Iterative diagonalization.......................................................164
5.5.3.1 Total energy and other properties......................165
5.6 DFT extensions and limitations.........................................................166
5.6.1 DFT extensions.......................................................................166
5.6.1.1 Spin-polarized DFT...............................................167
5.6.1.2 DFT with fractional occupancies.........................167
5.6.1.3 DFT for excited states............................................167
5.6.1.4 Finite-temperature DFT.......................................168
5.6.1.5 Time-dependent DFT...........................................168
5.6.1.6 Linear scaling of DFT...........................................169
5.6.2 DFT limitations......................................................................169
Homework......................................................................................................170
References........................................................................................................171
Further reading...............................................................................................172
Chapter 6 Treating solids.........................................................................173
6.1 Pseudopotential approach...................................................................174
6.1.1 Freezing the core electrons...................................................175
6.1.1.1 Core electrons........................................................175
6.1.1.2 Valence electrons...................................................175
6.1.1.3 Frozen-core approximation..................................176
6.1.2 Pseudizing the valence electrons.........................................176
6.1.2.1 Pseudizing procedure..........................................177
6.1.2.2 Benefits...................................................................178
6.1.3 Various pseudopotentials.....................................................179
6.1.3.1 Norm-conserving PPs..........................................179
6.1.3.2 UltrasoftPPs..........................................................179
6.1.3.3 PAW potentials......................................................180
6.2 Reducing the calculation size............................................................181
6.2.1 Supercell approach under periodic
boundary conditions............................................................182
Contents xiii
6.2.2 First Brillouin zone and irreducible Brillouin zone..........183
6.2.2.1 Reciprocal lattice...................................................183
6.2.2.2 The first Brillouin zone........................................186
6.2.2.3 Irreducible Brillouin zone....................................186
6.2.3 k-points...................................................................................187
6.2.3.1 fc-point sampling...................................................188
6.2.3.2 Monkhorst-Pack method.....................................189
6.2.3.3 T-point....................................................................189
6.3 Bloch theorem......................................................................................189
6.3.1 Electrons in solid...................................................................190
6.3.2 Bloch expression with periodic function...........................190
6.3.3 Bloch expression with Fourier expansions........................192
6.3.3.1 Fourier expansions...............................................192
6.3.3.2 Fast Fourier transformation................................193
6.3.3.3 Matrix expression for the KS equations............193
6.4 Plane wave expansions.......................................................................195
6.4.1 Basis set..................................................................................195
6.4.1.1 Local basis set........................................................195
6.4.1.2 Plane wave basis set.............................................195
6.4.2 Plane wave expansions for KS quantities..........................196
6.4.2.1 Charge density......................................................196
6.4.2.2 Kinetic energy.......................................................198
6.4.2.3 Effective potential.................................................198
6.4.2.4 KS equations..........................................................198
6.4.3 KS orbitals and bands...........................................................199
6.4.3.1 Band structure of free electron...........................200
6.4.3.2 Band structure of electrons in solids.................200
6.4.3.3 Density of states....................................................202
6.5 Some practical topics...........................................................................203
6.5.1 Energy cutoff..........................................................................203
6.5.1.1 Cutoff energy.........................................................203
6.5.2 Smearing.................................................................................204
6.5.2.1 Gaussian smearing...............................................205
6.5.2.2 Fermi smearing.....................................................205
6.5.2.3 Methfessel-Paxton smearing..............................205
6.5.2.4 Tetrahedron method with Blochl corrections.......206
6.6 Practical algorithms for DFT runs.....................................................206
6.6.1 Electronic minimizations.....................................................206
6.6.1.1 Direct diagonalization.........................................207
6.6.1.2 Iterative Davidson method..................................207
6.6.1.3 RMM-DIIS method...............................................207
6.6.2 Ionic minimizations..............................................................209
6.6.2.1 Hellmann-Feynman forces.................................209
6.6.2.2 Minimization methods........................................210
xiv Contents
6.6.3 Born-Oppenheimer molecular dynamics.........................210
6.6.4 Car-Parrinello molecular dynamics....................................211
6.6.4.1 CPMD for electronic minimization.....................211
6.6.4.2 CPMD for ionic minimization............................212
6.6.5 Multiscale methods...............................................................213
6.6.5.1 Crack propagation in silicon...............................213
Homework.......................................................................................................214
References.........................................................................................................214
Further reading...............................................................................................215
Chapter 7 DFT exercises with Quantum Espresso.............................217
7.1 Quantum espresso...............................................................................217
7.1.1 General features.....................................................................217
7.1.2 Installation.............................................................................218
7.2 Si2...........................................................................................................218
7.2.1 Introduction............................................................................218
7.2.2 Si2.in........................................................................................218
7.2.3 Si.pbe-rrkj.UPF.......................................................................220
7.2.4 Run..........................................................................................221
7.2.5 Si2.out.....................................................................................221
7.3 Si2-convergence test............................................................................223
7.3.1 Introduction............................................................................223
7.3.2 Si2-conE.in .............................................................................223
7.3.3 Results.....................................................................................223
7.3.4 Further runs...........................................................................224
7.4 Si2-band.................................................................................................227
7.4.1 Introduction............................................................................227
7.4.2 Si2-scf......................................................................................227
7.4.3 Si2-bands.................................................................................228
7.4.4 Results and discussion..........................................................229
7.5 Si7-vacancy............................................................................................230
7.5.1 Introduction............................................................................230
7.5.2 Si8-scf......................................................................................231
7.5.3 Si7v-relax................................................................................232
7.6 Si7-vacancy diffusion..........................................................................235
7.6.1 Introduction............................................................................235
7.6.2 Calculation method...............................................................235
7.6.3 Step 1: First image..................................................................236
7.6.4 Step 2: Last image..................................................................236
7.6.5 Step 3: Si7v.NEB20.in.............................................................237
Homework......................................................................................................241
References........................................................................................................242
Contents xv
Chapter 8 DFT exercises with VASP......................................................243
8.1 VASP......................................................................................................245
8.1.1 General features of VASP.....................................................245
8.1.2 Flow of VASP..........................................................................245
8.1.2.1 Ten things you should not do in a VASP run........246
8.2 Pt-atom..................................................................................................247
8.2.1 Input files .............................................................................247
8.2.1.1 INCAR....................................................................247
8.2.1.2 KPOINTS................................................................248
8.2.1.3 POSCAR.................................................................248
8.2.1.4 POTCAR.................................................................249
8.2.2 Run..........................................................................................249
8.2.3 Results ....................................................................................250
8.2.3.1 OSZICAR................................................................250
8.2.3.2 OUTCAR................................................................251
8.2.3.3 Continuous run.....................................................251
8.3 Pt-FCC....................................................................................................252
8.3.1 Input files................................................................................252
8.3.1.1 INCAR....................................................................252
8.3.1.2 KPOINTS................................................................254
8.3.1.3 POSCAR.................................................................254
8.3.2 Run..........................................................................................255
8.3.2.1 run.vasp..................................................................255
8.3.2.2 nohup.out...............................................................255
8.3.3 Results.....................................................................................256
8.3.3.1 CONTCAR.............................................................256
8.3.3.2 OUTCAR................................................................257
8.4 Convergence tests................................................................................257
8.4.1 Encut convergence.................................................................257
8.4.1.1 Shell script run.lattice...........................................258
8.4.1.2 Run..........................................................................259
8.4.1.3 Results....................................................................259
8.4.2 fc-points convergence.............................................................261
8.5 Pt-bulk...................................................................................................262
8.5.1 Cohesive energy of solid Pt..................................................262
8.5.1.1 Cohesive energy....................................................264
8.5.2 Vacancy formation energy of Pt..........................................265
8.5.2.1 Vacancy formation energy...................................265
8.5.2.2 CHGCAR plot........................................................266
8.6 Pt(lll)-surface.......................................................................................268
8.6.1 Pt(lll)-slab..............................................................................268
8.6.1.1 INCAR....................................................................268
8.6.1.2 KPOINTS................................................................269
xvi Contents
8.6.1.3 POSCAR...............................................................269
8.6.1.4 Results...................................................................271
8.6.2 Adsorption energy.................................................................272
8.6.2.1 POSCAR...............................................................272
8.6.2.2 POTCAR...............................................................274
8.6.2.3 Results...................................................................274
8.6.3 Work function and dipole correction..................................275
8.6.3.1 Work function......................................................275
8.6.3.2 Results...................................................................276
8.7 Nudged elastic band method.............................................................277
8.7.1 Principle of NEB method......................................................278
8.7.2 Procedure of the NEB method.............................................278
8.7.2.1 Initial and final states.........................................278
8.7.2.2 Initial band...........................................................279
8.7.2.3 Nudging the band...............................................279
8.7.2.4 Force calculation..................................................279
8.7.2.5 NEB method with climb.....................................279
8.7.3 Pt(lll)-0-NEB........................................................................280
8.7.3.1 Pt(lll)-slab-0-HCP.............................................280
8.7.3.2 Run NEB with VTST scripts..............................281
8.7.3.3 Results...................................................................282
8.8 Pt(lll)-catalyst.....................................................................................284
8.8.1 Catalyst...................................................................................284
8.8.2 Density of states.....................................................................285
8.8.3 Pt(lll )-slab-0-D0S................................................................285
8.8.3.1 Static run...............................................................285
8.8.3.2 DOS run................................................................285
8.8.3.3 Results...................................................................286
8.9 Band structure of silicon.....................................................................287
8.9.1 Static run for Si.......................................................................288
8.9.2 Run for band structure of Si.................................................290
8.9.2.1 INCAR..................................................................290
8.9.2.2 KPOINTS..............................................................290
8.9.2.3 EIGENVAL...........................................................291
8.10 Phonon calculation for silicon............................................................293
8.10.1 Input files................................................................................293
8.10.2 Phonon calculations..............................................................294
8.10.2.1 INPHON...............................................................295
Homework......................................................................................................297
References........................................................................................................297
Contents xvii
Chapter 9 DFT exercises with MedeA-VASP.......................................299
9.1 MedeA-VASP........................................................................................299
9.1.1 General features.....................................................................299
9.2 Si2-band-HSE06....................................................................................300
9.2.1 Introduction............................................................................300
9.2.2 Run steps................................................................................301
9.2.3 Results.....................................................................................302
9.3 Sil6-phonon..........................................................................................304
9.3.1 Introduction............................................................................304
9.3.2 Ionic relaxation for supercell with displacements............304
9.3.3 Results.....................................................................................304
9.4 W12C9-Co28-interface.........................................................................307
9.4.1 Introduction............................................................................307
9.4.2 Surface models for WC and Co............................................308
9.4.3 Interface model for WC-Co..................................................308
9.4.4 Results ....................................................................................309
9.5 Mg4(Mo6S8)3-barrier energy.................................................................311
9.5.1 Introduction.............................................................................311
9.5.2 NEB run...................................................................................314
9.5.3 Results......................................................................................314
9.6 Sil4-H2-ab initio MD.............................................................................314
9.6.1 Introduction.............................................................................314
9.6.2 Run steps..................................................................................316
9.6.3 Results.....................................................................................317
References.........................................................................................................318
Appendix A: List of symbols and abbreviations.......................................319
Appendix B: Linux basic commands..........................................................323
Appendix C: Convenient scripts..................................................................325
Appendix D: The Greek alphabet................................................................337
Appendix E: SI prefixes.................................................................................339
Appendix F: Atomic units.............................................................................341
Index................................................................................................................343
|
any_adam_object | 1 |
author | Lee, June Gunn |
author_facet | Lee, June Gunn |
author_role | aut |
author_sort | Lee, June Gunn |
author_variant | j g l jg jgl |
building | Verbundindex |
bvnumber | BV043977992 |
callnumber-first | T - Technology |
callnumber-label | TA404 |
callnumber-raw | TA404.23 |
callnumber-search | TA404.23 |
callnumber-sort | TA 3404.23 |
callnumber-subject | TA - General and Civil Engineering |
ctrlnum | (OCoLC)973159676 (DE-599)BVBBV043977992 |
dewey-full | 620.1/10113 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.1/10113 |
dewey-search | 620.1/10113 |
dewey-sort | 3620.1 510113 |
dewey-tens | 620 - Engineering and allied operations |
edition | Second edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01438nam a2200409 c 4500</leader><controlfield tag="001">BV043977992</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170203 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">161223s2017 xxua||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">016025825</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781498749732</subfield><subfield code="9">978-1-4987-4973-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)973159676</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043977992</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA404.23</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.1/10113</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lee, June Gunn</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Computational materials science</subfield><subfield code="b">an introduction</subfield><subfield code="c">June Gunn Lee</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton</subfield><subfield code="b">CRC Press, Taylor & Francis</subfield><subfield code="c">2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxiii, 351 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Datenverarbeitung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Materials</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Materials</subfield><subfield code="x">Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Molecular dynamics</subfield><subfield code="x">Mathematics</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029386437&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029386437</subfield></datafield></record></collection> |
id | DE-604.BV043977992 |
illustrated | Illustrated |
indexdate | 2024-07-10T07:40:12Z |
institution | BVB |
isbn | 9781498749732 |
language | English |
lccn | 016025825 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029386437 |
oclc_num | 973159676 |
open_access_boolean | |
owner | DE-29T |
owner_facet | DE-29T |
physical | xxiii, 351 Seiten Illustrationen, Diagramme |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | CRC Press, Taylor & Francis |
record_format | marc |
spelling | Lee, June Gunn Verfasser aut Computational materials science an introduction June Gunn Lee Second edition Boca Raton CRC Press, Taylor & Francis 2017 xxiii, 351 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Includes bibliographical references and index Datenverarbeitung Mathematik Mathematisches Modell Materials Mathematical models Materials Data processing Molecular dynamics Mathematics HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029386437&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Lee, June Gunn Computational materials science an introduction Datenverarbeitung Mathematik Mathematisches Modell Materials Mathematical models Materials Data processing Molecular dynamics Mathematics |
title | Computational materials science an introduction |
title_auth | Computational materials science an introduction |
title_exact_search | Computational materials science an introduction |
title_full | Computational materials science an introduction June Gunn Lee |
title_fullStr | Computational materials science an introduction June Gunn Lee |
title_full_unstemmed | Computational materials science an introduction June Gunn Lee |
title_short | Computational materials science |
title_sort | computational materials science an introduction |
title_sub | an introduction |
topic | Datenverarbeitung Mathematik Mathematisches Modell Materials Mathematical models Materials Data processing Molecular dynamics Mathematics |
topic_facet | Datenverarbeitung Mathematik Mathematisches Modell Materials Mathematical models Materials Data processing Molecular dynamics Mathematics |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029386437&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT leejunegunn computationalmaterialsscienceanintroduction |