Grid homology for knots and links:
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Providence, Rhode Island
American Mathematical Society
[2015]
|
Schriftenreihe: | Mathematical surveys and monographs
volume 208 |
Schlagworte: | |
Online-Zugang: | UBM01 UBR01 Volltext |
Beschreibung: | Literaturangaben |
Beschreibung: | 1 Online-Ressource (x, 410 Seiten) Illustrationen, Diagramme |
ISBN: | 9781470427399 |
DOI: | 10.1090/surv/208 |
Internformat
MARC
LEADER | 00000nmm a2200000 cb4500 | ||
---|---|---|---|
001 | BV043966291 | ||
003 | DE-604 | ||
005 | 20230824 | ||
007 | cr|uuu---uuuuu | ||
008 | 161216s2015 xxu|||| o||u| ||||||eng d | ||
020 | |a 9781470427399 |c online |9 978-1-4704-2739-9 | ||
024 | 7 | |a 10.1090/surv/208 |2 doi | |
035 | |a (OCoLC)968139535 | ||
035 | |a (DE-599)BVBBV043966291 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-355 |a DE-19 |a DE-83 |a DE-11 | ||
050 | 0 | |a QA612.2 | |
082 | 0 | |a 514/.2242 |2 23 | |
084 | |a SK 320 |0 (DE-625)143231: |2 rvk | ||
084 | |a 57M25 |2 msc | ||
100 | 1 | |a Ozsváth, Peter Steven |d 1967- |e Verfasser |0 (DE-588)1081461268 |4 aut | |
245 | 1 | 0 | |a Grid homology for knots and links |c Peter S. Ozsváth, András I. Stipsicz, Zoltán Szabó |
264 | 1 | |a Providence, Rhode Island |b American Mathematical Society |c [2015] | |
264 | 4 | |c © 2015 | |
300 | |a 1 Online-Ressource (x, 410 Seiten) |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Mathematical surveys and monographs |v volume 208 | |
500 | |a Literaturangaben | ||
650 | 4 | |a Manifolds and cell complexes ... Low-dimensional topology ... Knots and links in $S 3 / 2msc | |
650 | 7 | |a Manifolds and cell complexes ... Low-dimensional topology ... Invariants of knots and 3-manifolds |2 msc | |
650 | 7 | |a Manifolds and cell complexes ... Differential topology ... Floer homology |2 msc | |
650 | 7 | |a Differential geometry ... Symplectic geometry, contact geometry ... Contact manifolds, general |2 msc | |
650 | 4 | |a Knot theory | |
650 | 4 | |a Link theory | |
650 | 4 | |a Homology theory | |
650 | 4 | |a Manifolds and cell complexes ... Low-dimensional topology ... Knots and links in $S 3 | |
650 | 4 | |a Manifolds and cell complexes ... Low-dimensional topology ... Invariants of knots and 3-manifolds | |
650 | 4 | |a Manifolds and cell complexes ... Differential topology ... Floer homology | |
650 | 4 | |a Differential geometry ... Symplectic geometry, contact geometry ... Contact manifolds, general | |
700 | 1 | |a Stipsicz, András |d 1966- |e Verfasser |0 (DE-588)138530785 |4 aut | |
700 | 1 | |a Szabó, Zoltán |d 1965- |e Verfasser |0 (DE-588)1081462256 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-4704-1737-6 |
830 | 0 | |a Mathematical surveys and monographs |v volume 208 |w (DE-604)BV042339669 |9 208 | |
856 | 4 | 0 | |u https://doi.org/10.1090/surv/208 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-138-AMS | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029374904 | ||
966 | e | |u https://doi.org/10.1090/surv/208 |l UBM01 |p ZDB-138-AMS |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1090/surv/208 |l UBR01 |p ZDB-138-AMS |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176927511019520 |
---|---|
any_adam_object | |
author | Ozsváth, Peter Steven 1967- Stipsicz, András 1966- Szabó, Zoltán 1965- |
author_GND | (DE-588)1081461268 (DE-588)138530785 (DE-588)1081462256 |
author_facet | Ozsváth, Peter Steven 1967- Stipsicz, András 1966- Szabó, Zoltán 1965- |
author_role | aut aut aut |
author_sort | Ozsváth, Peter Steven 1967- |
author_variant | p s o ps pso a s as z s zs |
building | Verbundindex |
bvnumber | BV043966291 |
callnumber-first | Q - Science |
callnumber-label | QA612 |
callnumber-raw | QA612.2 |
callnumber-search | QA612.2 |
callnumber-sort | QA 3612.2 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 320 |
collection | ZDB-138-AMS |
ctrlnum | (OCoLC)968139535 (DE-599)BVBBV043966291 |
dewey-full | 514/.2242 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514/.2242 |
dewey-search | 514/.2242 |
dewey-sort | 3514 42242 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1090/surv/208 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02757nmm a2200589 cb4500</leader><controlfield tag="001">BV043966291</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230824 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161216s2015 xxu|||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781470427399</subfield><subfield code="c">online</subfield><subfield code="9">978-1-4704-2739-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1090/surv/208</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)968139535</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043966291</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA612.2</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514/.2242</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 320</subfield><subfield code="0">(DE-625)143231:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">57M25</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ozsváth, Peter Steven</subfield><subfield code="d">1967-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1081461268</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Grid homology for knots and links</subfield><subfield code="c">Peter S. Ozsváth, András I. Stipsicz, Zoltán Szabó</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Providence, Rhode Island</subfield><subfield code="b">American Mathematical Society</subfield><subfield code="c">[2015]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (x, 410 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Mathematical surveys and monographs</subfield><subfield code="v">volume 208</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturangaben</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds and cell complexes ... Low-dimensional topology ... Knots and links in $S 3 / 2msc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Manifolds and cell complexes ... Low-dimensional topology ... Invariants of knots and 3-manifolds</subfield><subfield code="2">msc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Manifolds and cell complexes ... Differential topology ... Floer homology</subfield><subfield code="2">msc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential geometry ... Symplectic geometry, contact geometry ... Contact manifolds, general</subfield><subfield code="2">msc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Knot theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Link theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homology theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds and cell complexes ... Low-dimensional topology ... Knots and links in $S 3</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds and cell complexes ... Low-dimensional topology ... Invariants of knots and 3-manifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds and cell complexes ... Differential topology ... Floer homology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential geometry ... Symplectic geometry, contact geometry ... Contact manifolds, general</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stipsicz, András</subfield><subfield code="d">1966-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)138530785</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Szabó, Zoltán</subfield><subfield code="d">1965-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1081462256</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-4704-1737-6</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Mathematical surveys and monographs</subfield><subfield code="v">volume 208</subfield><subfield code="w">(DE-604)BV042339669</subfield><subfield code="9">208</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1090/surv/208</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-138-AMS</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029374904</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1090/surv/208</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-138-AMS</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1090/surv/208</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-138-AMS</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043966291 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:57Z |
institution | BVB |
isbn | 9781470427399 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029374904 |
oclc_num | 968139535 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-83 DE-11 |
owner_facet | DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-83 DE-11 |
physical | 1 Online-Ressource (x, 410 Seiten) Illustrationen, Diagramme |
psigel | ZDB-138-AMS |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | American Mathematical Society |
record_format | marc |
series | Mathematical surveys and monographs |
series2 | Mathematical surveys and monographs |
spelling | Ozsváth, Peter Steven 1967- Verfasser (DE-588)1081461268 aut Grid homology for knots and links Peter S. Ozsváth, András I. Stipsicz, Zoltán Szabó Providence, Rhode Island American Mathematical Society [2015] © 2015 1 Online-Ressource (x, 410 Seiten) Illustrationen, Diagramme txt rdacontent c rdamedia cr rdacarrier Mathematical surveys and monographs volume 208 Literaturangaben Manifolds and cell complexes ... Low-dimensional topology ... Knots and links in $S 3 / 2msc Manifolds and cell complexes ... Low-dimensional topology ... Invariants of knots and 3-manifolds msc Manifolds and cell complexes ... Differential topology ... Floer homology msc Differential geometry ... Symplectic geometry, contact geometry ... Contact manifolds, general msc Knot theory Link theory Homology theory Manifolds and cell complexes ... Low-dimensional topology ... Knots and links in $S 3 Manifolds and cell complexes ... Low-dimensional topology ... Invariants of knots and 3-manifolds Manifolds and cell complexes ... Differential topology ... Floer homology Differential geometry ... Symplectic geometry, contact geometry ... Contact manifolds, general Stipsicz, András 1966- Verfasser (DE-588)138530785 aut Szabó, Zoltán 1965- Verfasser (DE-588)1081462256 aut Erscheint auch als Druck-Ausgabe 978-1-4704-1737-6 Mathematical surveys and monographs volume 208 (DE-604)BV042339669 208 https://doi.org/10.1090/surv/208 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Ozsváth, Peter Steven 1967- Stipsicz, András 1966- Szabó, Zoltán 1965- Grid homology for knots and links Mathematical surveys and monographs Manifolds and cell complexes ... Low-dimensional topology ... Knots and links in $S 3 / 2msc Manifolds and cell complexes ... Low-dimensional topology ... Invariants of knots and 3-manifolds msc Manifolds and cell complexes ... Differential topology ... Floer homology msc Differential geometry ... Symplectic geometry, contact geometry ... Contact manifolds, general msc Knot theory Link theory Homology theory Manifolds and cell complexes ... Low-dimensional topology ... Knots and links in $S 3 Manifolds and cell complexes ... Low-dimensional topology ... Invariants of knots and 3-manifolds Manifolds and cell complexes ... Differential topology ... Floer homology Differential geometry ... Symplectic geometry, contact geometry ... Contact manifolds, general |
title | Grid homology for knots and links |
title_auth | Grid homology for knots and links |
title_exact_search | Grid homology for knots and links |
title_full | Grid homology for knots and links Peter S. Ozsváth, András I. Stipsicz, Zoltán Szabó |
title_fullStr | Grid homology for knots and links Peter S. Ozsváth, András I. Stipsicz, Zoltán Szabó |
title_full_unstemmed | Grid homology for knots and links Peter S. Ozsváth, András I. Stipsicz, Zoltán Szabó |
title_short | Grid homology for knots and links |
title_sort | grid homology for knots and links |
topic | Manifolds and cell complexes ... Low-dimensional topology ... Knots and links in $S 3 / 2msc Manifolds and cell complexes ... Low-dimensional topology ... Invariants of knots and 3-manifolds msc Manifolds and cell complexes ... Differential topology ... Floer homology msc Differential geometry ... Symplectic geometry, contact geometry ... Contact manifolds, general msc Knot theory Link theory Homology theory Manifolds and cell complexes ... Low-dimensional topology ... Knots and links in $S 3 Manifolds and cell complexes ... Low-dimensional topology ... Invariants of knots and 3-manifolds Manifolds and cell complexes ... Differential topology ... Floer homology Differential geometry ... Symplectic geometry, contact geometry ... Contact manifolds, general |
topic_facet | Manifolds and cell complexes ... Low-dimensional topology ... Knots and links in $S 3 / 2msc Manifolds and cell complexes ... Low-dimensional topology ... Invariants of knots and 3-manifolds Manifolds and cell complexes ... Differential topology ... Floer homology Differential geometry ... Symplectic geometry, contact geometry ... Contact manifolds, general Knot theory Link theory Homology theory Manifolds and cell complexes ... Low-dimensional topology ... Knots and links in $S 3 |
url | https://doi.org/10.1090/surv/208 |
volume_link | (DE-604)BV042339669 |
work_keys_str_mv | AT ozsvathpetersteven gridhomologyforknotsandlinks AT stipsiczandras gridhomologyforknotsandlinks AT szabozoltan gridhomologyforknotsandlinks |