Auxiliary polynomials in number theory:
This unified account of various aspects of a powerful classical method, easy to understand in its simplest forms, is illustrated by applications in several areas of number theory. As well as including diophantine approximation and transcendence, which were mainly responsible for its invention, the a...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2016
|
Schriftenreihe: | Cambridge tracts in mathematics
207 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBR01 UEI01 Volltext |
Zusammenfassung: | This unified account of various aspects of a powerful classical method, easy to understand in its simplest forms, is illustrated by applications in several areas of number theory. As well as including diophantine approximation and transcendence, which were mainly responsible for its invention, the author places the method in a broader context by exploring its application in other areas, such as exponential sums and counting problems in both finite fields and the field of rationals. Throughout the book, the method is explained in a 'molecular' fashion, where key ideas are introduced independently. Each application is the most elementary significant example of its kind and appears with detailed references to subsequent developments, making it accessible to advanced undergraduates as well as postgraduate students in number theory or related areas. It provides over 700 exercises both guiding and challenging, while the broad array of applications should interest professionals in fields from number theory to algebraic geometry |
Beschreibung: | 1 Online-Ressource (xviii, 348 Seiten) |
ISBN: | 9781107448018 |
DOI: | 10.1017/CBO9781107448018 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043946084 | ||
003 | DE-604 | ||
005 | 20210111 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2016 |||| o||u| ||||||eng d | ||
020 | |a 9781107448018 |c OnlineAusgabe |9 978-1-107-44801-8 | ||
024 | 7 | |a 10.1017/CBO9781107448018 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781107448018 | ||
035 | |a (OCoLC)967604942 | ||
035 | |a (DE-599)BVBBV043946084 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-824 |a DE-92 |a DE-355 | ||
050 | 0 | |a QA241 | |
082 | 0 | |a 512.7/4 |2 23 | |
082 | 0 | |a 512.74 | |
084 | |a SK 180 |0 (DE-625)143222: |2 rvk | ||
100 | 1 | |a Masser, David William |d 1948- |e Verfasser |0 (DE-588)102371499X |4 aut | |
245 | 1 | 0 | |a Auxiliary polynomials in number theory |c David Masser, University of Basle, Switzerland |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2016 | |
300 | |a 1 Online-Ressource (xviii, 348 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Cambridge tracts in mathematics |v 207 | |
520 | |a This unified account of various aspects of a powerful classical method, easy to understand in its simplest forms, is illustrated by applications in several areas of number theory. As well as including diophantine approximation and transcendence, which were mainly responsible for its invention, the author places the method in a broader context by exploring its application in other areas, such as exponential sums and counting problems in both finite fields and the field of rationals. Throughout the book, the method is explained in a 'molecular' fashion, where key ideas are introduced independently. Each application is the most elementary significant example of its kind and appears with detailed references to subsequent developments, making it accessible to advanced undergraduates as well as postgraduate students in number theory or related areas. It provides over 700 exercises both guiding and challenging, while the broad array of applications should interest professionals in fields from number theory to algebraic geometry | ||
650 | 4 | |a Number theory | |
650 | 4 | |a Polynomials | |
650 | 0 | 7 | |a Zahlentheorie |0 (DE-588)4067277-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Polynom |0 (DE-588)4046711-9 |2 gnd |9 rswk-swf |
653 | 0 | |a Number theory | |
653 | 0 | |a Polynomials | |
689 | 0 | 0 | |a Zahlentheorie |0 (DE-588)4067277-3 |D s |
689 | 0 | 1 | |a Polynom |0 (DE-588)4046711-9 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-107-06157-6 |
830 | 0 | |a Cambridge tracts in mathematics |v 207 |w (DE-604)BV000000001 |9 207 | |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781107448018 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO |a ebook | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029355055 | ||
966 | e | |u https://doi.org/10.1017/CBO9781107448018 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781107448018 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781107448018 |l UBR01 |p ZDB-20-CBO |q UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781107448018 |l UEI01 |p ebook |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176893036986368 |
---|---|
any_adam_object | |
author | Masser, David William 1948- |
author_GND | (DE-588)102371499X |
author_facet | Masser, David William 1948- |
author_role | aut |
author_sort | Masser, David William 1948- |
author_variant | d w m dw dwm |
building | Verbundindex |
bvnumber | BV043946084 |
callnumber-first | Q - Science |
callnumber-label | QA241 |
callnumber-raw | QA241 |
callnumber-search | QA241 |
callnumber-sort | QA 3241 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 180 |
collection | ZDB-20-CBO ebook |
ctrlnum | (ZDB-20-CBO)CR9781107448018 (OCoLC)967604942 (DE-599)BVBBV043946084 |
dewey-full | 512.7/4 512.74 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.7/4 512.74 |
dewey-search | 512.7/4 512.74 |
dewey-sort | 3512.7 14 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9781107448018 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03265nmm a2200553zcb4500</leader><controlfield tag="001">BV043946084</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210111 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2016 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107448018</subfield><subfield code="c">OnlineAusgabe</subfield><subfield code="9">978-1-107-44801-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781107448018</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781107448018</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967604942</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043946084</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA241</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.7/4</subfield><subfield code="2">23</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.74</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 180</subfield><subfield code="0">(DE-625)143222:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Masser, David William</subfield><subfield code="d">1948-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)102371499X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Auxiliary polynomials in number theory</subfield><subfield code="c">David Masser, University of Basle, Switzerland</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xviii, 348 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge tracts in mathematics</subfield><subfield code="v">207</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This unified account of various aspects of a powerful classical method, easy to understand in its simplest forms, is illustrated by applications in several areas of number theory. As well as including diophantine approximation and transcendence, which were mainly responsible for its invention, the author places the method in a broader context by exploring its application in other areas, such as exponential sums and counting problems in both finite fields and the field of rationals. Throughout the book, the method is explained in a 'molecular' fashion, where key ideas are introduced independently. Each application is the most elementary significant example of its kind and appears with detailed references to subsequent developments, making it accessible to advanced undergraduates as well as postgraduate students in number theory or related areas. It provides over 700 exercises both guiding and challenging, while the broad array of applications should interest professionals in fields from number theory to algebraic geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polynomials</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zahlentheorie</subfield><subfield code="0">(DE-588)4067277-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Polynom</subfield><subfield code="0">(DE-588)4046711-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Number theory</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Polynomials</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Zahlentheorie</subfield><subfield code="0">(DE-588)4067277-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Polynom</subfield><subfield code="0">(DE-588)4046711-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-107-06157-6</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Cambridge tracts in mathematics</subfield><subfield code="v">207</subfield><subfield code="w">(DE-604)BV000000001</subfield><subfield code="9">207</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781107448018</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield><subfield code="a">ebook</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029355055</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781107448018</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781107448018</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781107448018</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBR Einzelkauf (Lückenergänzung CUP Serien 2018)</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781107448018</subfield><subfield code="l">UEI01</subfield><subfield code="p">ebook</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043946084 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:25Z |
institution | BVB |
isbn | 9781107448018 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029355055 |
oclc_num | 967604942 |
open_access_boolean | |
owner | DE-12 DE-824 DE-92 DE-355 DE-BY-UBR |
owner_facet | DE-12 DE-824 DE-92 DE-355 DE-BY-UBR |
physical | 1 Online-Ressource (xviii, 348 Seiten) |
psigel | ZDB-20-CBO ebook ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | Cambridge University Press |
record_format | marc |
series | Cambridge tracts in mathematics |
series2 | Cambridge tracts in mathematics |
spelling | Masser, David William 1948- Verfasser (DE-588)102371499X aut Auxiliary polynomials in number theory David Masser, University of Basle, Switzerland Cambridge Cambridge University Press 2016 1 Online-Ressource (xviii, 348 Seiten) txt rdacontent c rdamedia cr rdacarrier Cambridge tracts in mathematics 207 This unified account of various aspects of a powerful classical method, easy to understand in its simplest forms, is illustrated by applications in several areas of number theory. As well as including diophantine approximation and transcendence, which were mainly responsible for its invention, the author places the method in a broader context by exploring its application in other areas, such as exponential sums and counting problems in both finite fields and the field of rationals. Throughout the book, the method is explained in a 'molecular' fashion, where key ideas are introduced independently. Each application is the most elementary significant example of its kind and appears with detailed references to subsequent developments, making it accessible to advanced undergraduates as well as postgraduate students in number theory or related areas. It provides over 700 exercises both guiding and challenging, while the broad array of applications should interest professionals in fields from number theory to algebraic geometry Number theory Polynomials Zahlentheorie (DE-588)4067277-3 gnd rswk-swf Polynom (DE-588)4046711-9 gnd rswk-swf Zahlentheorie (DE-588)4067277-3 s Polynom (DE-588)4046711-9 s DE-604 Erscheint auch als Druck-Ausgabe 978-1-107-06157-6 Cambridge tracts in mathematics 207 (DE-604)BV000000001 207 https://doi.org/10.1017/CBO9781107448018 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Masser, David William 1948- Auxiliary polynomials in number theory Cambridge tracts in mathematics Number theory Polynomials Zahlentheorie (DE-588)4067277-3 gnd Polynom (DE-588)4046711-9 gnd |
subject_GND | (DE-588)4067277-3 (DE-588)4046711-9 |
title | Auxiliary polynomials in number theory |
title_auth | Auxiliary polynomials in number theory |
title_exact_search | Auxiliary polynomials in number theory |
title_full | Auxiliary polynomials in number theory David Masser, University of Basle, Switzerland |
title_fullStr | Auxiliary polynomials in number theory David Masser, University of Basle, Switzerland |
title_full_unstemmed | Auxiliary polynomials in number theory David Masser, University of Basle, Switzerland |
title_short | Auxiliary polynomials in number theory |
title_sort | auxiliary polynomials in number theory |
topic | Number theory Polynomials Zahlentheorie (DE-588)4067277-3 gnd Polynom (DE-588)4046711-9 gnd |
topic_facet | Number theory Polynomials Zahlentheorie Polynom |
url | https://doi.org/10.1017/CBO9781107448018 |
volume_link | (DE-604)BV000000001 |
work_keys_str_mv | AT masserdavidwilliam auxiliarypolynomialsinnumbertheory |