A course in mathematical analysis, Volume 3, Complex analysis, measure and integration:
The three volumes of A Course in Mathematical Analysis provide a full and detailed account of all those elements of real and complex analysis that an undergraduate mathematics student can expect to encounter in the first two or three years of study. Containing hundreds of exercises, examples and app...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2014
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | The three volumes of A Course in Mathematical Analysis provide a full and detailed account of all those elements of real and complex analysis that an undergraduate mathematics student can expect to encounter in the first two or three years of study. Containing hundreds of exercises, examples and applications, these books will become an invaluable resource for both students and instructors. Volume 1 focuses on the analysis of real-valued functions of a real variable. Volume 2 goes on to consider metric and topological spaces. This third volume develops the classical theory of functions of a complex variable. It carefully establishes the properties of the complex plane, including a proof of the Jordan curve theorem. Lebesgue measure is introduced, and is used as a model for other measure spaces, where the theory of integration is developed. The Radon–Nikodym theorem is proved, and the differentiation of measures discussed |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (x, pages 627-939) |
ISBN: | 9781139424516 |
DOI: | 10.1017/CBO9781139424516 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043945907 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2014 |||| o||u| ||||||eng d | ||
020 | |a 9781139424516 |c Online |9 978-1-139-42451-6 | ||
024 | 7 | |a 10.1017/CBO9781139424516 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781139424516 | ||
035 | |a (OCoLC)992903930 | ||
035 | |a (DE-599)BVBBV043945907 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 515 |2 23 | |
084 | |a SK 400 |0 (DE-625)143237: |2 rvk | ||
100 | 1 | |a Garling, D. J. H. |e Verfasser |4 aut | |
245 | 1 | 0 | |a A course in mathematical analysis, Volume 3, Complex analysis, measure and integration |c D. J. H. Garling |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2014 | |
300 | |a 1 online resource (x, pages 627-939) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a The three volumes of A Course in Mathematical Analysis provide a full and detailed account of all those elements of real and complex analysis that an undergraduate mathematics student can expect to encounter in the first two or three years of study. Containing hundreds of exercises, examples and applications, these books will become an invaluable resource for both students and instructors. Volume 1 focuses on the analysis of real-valued functions of a real variable. Volume 2 goes on to consider metric and topological spaces. This third volume develops the classical theory of functions of a complex variable. It carefully establishes the properties of the complex plane, including a proof of the Jordan curve theorem. Lebesgue measure is introduced, and is used as a model for other measure spaces, where the theory of integration is developed. The Radon–Nikodym theorem is proved, and the differentiation of measures discussed | ||
650 | 4 | |a Mathematical analysis | |
650 | 0 | 7 | |a Analysis |0 (DE-588)4001865-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Analysis |0 (DE-588)4001865-9 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-1-107-03204-0 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-1-107-66330-5 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781139424516 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029354878 | ||
966 | e | |u https://doi.org/10.1017/CBO9781139424516 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781139424516 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176892588195840 |
---|---|
any_adam_object | |
author | Garling, D. J. H. |
author_facet | Garling, D. J. H. |
author_role | aut |
author_sort | Garling, D. J. H. |
author_variant | d j h g djh djhg |
building | Verbundindex |
bvnumber | BV043945907 |
classification_rvk | SK 400 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781139424516 (OCoLC)992903930 (DE-599)BVBBV043945907 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9781139424516 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02666nmm a2200445zc 4500</leader><controlfield tag="001">BV043945907</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2014 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139424516</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-139-42451-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781139424516</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781139424516</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)992903930</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043945907</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 400</subfield><subfield code="0">(DE-625)143237:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Garling, D. J. H.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A course in mathematical analysis, Volume 3, Complex analysis, measure and integration</subfield><subfield code="c">D. J. H. Garling</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (x, pages 627-939)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The three volumes of A Course in Mathematical Analysis provide a full and detailed account of all those elements of real and complex analysis that an undergraduate mathematics student can expect to encounter in the first two or three years of study. Containing hundreds of exercises, examples and applications, these books will become an invaluable resource for both students and instructors. Volume 1 focuses on the analysis of real-valued functions of a real variable. Volume 2 goes on to consider metric and topological spaces. This third volume develops the classical theory of functions of a complex variable. It carefully establishes the properties of the complex plane, including a proof of the Jordan curve theorem. Lebesgue measure is introduced, and is used as a model for other measure spaces, where the theory of integration is developed. The Radon–Nikodym theorem is proved, and the differentiation of measures discussed</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Analysis</subfield><subfield code="0">(DE-588)4001865-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Analysis</subfield><subfield code="0">(DE-588)4001865-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-1-107-03204-0</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-1-107-66330-5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781139424516</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029354878</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139424516</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139424516</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043945907 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:24Z |
institution | BVB |
isbn | 9781139424516 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029354878 |
oclc_num | 992903930 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (x, pages 627-939) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Garling, D. J. H. Verfasser aut A course in mathematical analysis, Volume 3, Complex analysis, measure and integration D. J. H. Garling Cambridge Cambridge University Press 2014 1 online resource (x, pages 627-939) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 05 Oct 2015) The three volumes of A Course in Mathematical Analysis provide a full and detailed account of all those elements of real and complex analysis that an undergraduate mathematics student can expect to encounter in the first two or three years of study. Containing hundreds of exercises, examples and applications, these books will become an invaluable resource for both students and instructors. Volume 1 focuses on the analysis of real-valued functions of a real variable. Volume 2 goes on to consider metric and topological spaces. This third volume develops the classical theory of functions of a complex variable. It carefully establishes the properties of the complex plane, including a proof of the Jordan curve theorem. Lebesgue measure is introduced, and is used as a model for other measure spaces, where the theory of integration is developed. The Radon–Nikodym theorem is proved, and the differentiation of measures discussed Mathematical analysis Analysis (DE-588)4001865-9 gnd rswk-swf Analysis (DE-588)4001865-9 s DE-604 Erscheint auch als Druckausgabe 978-1-107-03204-0 Erscheint auch als Druckausgabe 978-1-107-66330-5 https://doi.org/10.1017/CBO9781139424516 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Garling, D. J. H. A course in mathematical analysis, Volume 3, Complex analysis, measure and integration Mathematical analysis Analysis (DE-588)4001865-9 gnd |
subject_GND | (DE-588)4001865-9 |
title | A course in mathematical analysis, Volume 3, Complex analysis, measure and integration |
title_auth | A course in mathematical analysis, Volume 3, Complex analysis, measure and integration |
title_exact_search | A course in mathematical analysis, Volume 3, Complex analysis, measure and integration |
title_full | A course in mathematical analysis, Volume 3, Complex analysis, measure and integration D. J. H. Garling |
title_fullStr | A course in mathematical analysis, Volume 3, Complex analysis, measure and integration D. J. H. Garling |
title_full_unstemmed | A course in mathematical analysis, Volume 3, Complex analysis, measure and integration D. J. H. Garling |
title_short | A course in mathematical analysis, Volume 3, Complex analysis, measure and integration |
title_sort | a course in mathematical analysis volume 3 complex analysis measure and integration |
topic | Mathematical analysis Analysis (DE-588)4001865-9 gnd |
topic_facet | Mathematical analysis Analysis |
url | https://doi.org/10.1017/CBO9781139424516 |
work_keys_str_mv | AT garlingdjh acourseinmathematicalanalysisvolume3complexanalysismeasureandintegration |