Introduction to measure and integration:
This paperback, which comprises the first part of Introduction to Measure and Probability by J. F. C. Kingman and S. J. Taylor, gives a self-contained treatment of the theory of finite measures in general spaces at the undergraduate level. It sets the material out in a form which not only provides a...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1973
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | This paperback, which comprises the first part of Introduction to Measure and Probability by J. F. C. Kingman and S. J. Taylor, gives a self-contained treatment of the theory of finite measures in general spaces at the undergraduate level. It sets the material out in a form which not only provides an introduction for intending specialists in measure theory but also meets the needs of students of probability. The theory of measure and integration is presented for general spaces, with Lebesgue measure and the Lebesgue integral considered as important examples whose special properties are obtained. The introduction to functional analysis which follows covers the material to probability theory and also the basic theory of L2-spaces, important in modern physics. A large number of examples is included; these form an essential part of the development |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (vi, 266 pages) |
ISBN: | 9780511662478 |
DOI: | 10.1017/CBO9780511662478 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043945889 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1973 |||| o||u| ||||||eng d | ||
020 | |a 9780511662478 |c Online |9 978-0-511-66247-8 | ||
024 | 7 | |a 10.1017/CBO9780511662478 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511662478 | ||
035 | |a (OCoLC)850547136 | ||
035 | |a (DE-599)BVBBV043945889 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 515/.42 |2 19eng | |
084 | |a SK 430 |0 (DE-625)143239: |2 rvk | ||
100 | 1 | |a Taylor, S. J. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Introduction to measure and integration |c by S.J. Taylor |
246 | 1 | 3 | |a Introduction to Measure & Integration |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1973 | |
300 | |a 1 online resource (vi, 266 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a This paperback, which comprises the first part of Introduction to Measure and Probability by J. F. C. Kingman and S. J. Taylor, gives a self-contained treatment of the theory of finite measures in general spaces at the undergraduate level. It sets the material out in a form which not only provides an introduction for intending specialists in measure theory but also meets the needs of students of probability. The theory of measure and integration is presented for general spaces, with Lebesgue measure and the Lebesgue integral considered as important examples whose special properties are obtained. The introduction to functional analysis which follows covers the material to probability theory and also the basic theory of L2-spaces, important in modern physics. A large number of examples is included; these form an essential part of the development | ||
650 | 4 | |a Measure theory | |
650 | 4 | |a Integrals, Generalized | |
650 | 0 | 7 | |a Integration |g Mathematik |0 (DE-588)4072852-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Integrationstheorie |0 (DE-588)4138369-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maßtheorie |0 (DE-588)4074626-4 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
689 | 0 | 0 | |a Maßtheorie |0 (DE-588)4074626-4 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
689 | 1 | 0 | |a Integration |g Mathematik |0 (DE-588)4072852-3 |D s |
689 | 1 | |8 3\p |5 DE-604 | |
689 | 2 | 0 | |a Integrationstheorie |0 (DE-588)4138369-2 |D s |
689 | 2 | |8 4\p |5 DE-604 | |
700 | 1 | |a Kingman, J. F. C.XXtIntroduction to measure and probability |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-09804-5 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511662478 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029354860 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511662478 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511662478 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176892539961344 |
---|---|
any_adam_object | |
author | Taylor, S. J. |
author_facet | Taylor, S. J. |
author_role | aut |
author_sort | Taylor, S. J. |
author_variant | s j t sj sjt |
building | Verbundindex |
bvnumber | BV043945889 |
classification_rvk | SK 430 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511662478 (OCoLC)850547136 (DE-599)BVBBV043945889 |
dewey-full | 515/.42 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.42 |
dewey-search | 515/.42 |
dewey-sort | 3515 242 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511662478 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03382nmm a2200601zc 4500</leader><controlfield tag="001">BV043945889</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1973 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511662478</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-66247-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511662478</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511662478</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)850547136</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043945889</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.42</subfield><subfield code="2">19eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 430</subfield><subfield code="0">(DE-625)143239:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Taylor, S. J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to measure and integration</subfield><subfield code="c">by S.J. Taylor</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Introduction to Measure & Integration</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1973</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (vi, 266 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paperback, which comprises the first part of Introduction to Measure and Probability by J. F. C. Kingman and S. J. Taylor, gives a self-contained treatment of the theory of finite measures in general spaces at the undergraduate level. It sets the material out in a form which not only provides an introduction for intending specialists in measure theory but also meets the needs of students of probability. The theory of measure and integration is presented for general spaces, with Lebesgue measure and the Lebesgue integral considered as important examples whose special properties are obtained. The introduction to functional analysis which follows covers the material to probability theory and also the basic theory of L2-spaces, important in modern physics. A large number of examples is included; these form an essential part of the development</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Measure theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integrals, Generalized</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Integration</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4072852-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Integrationstheorie</subfield><subfield code="0">(DE-588)4138369-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maßtheorie</subfield><subfield code="0">(DE-588)4074626-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maßtheorie</subfield><subfield code="0">(DE-588)4074626-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Integration</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4072852-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Integrationstheorie</subfield><subfield code="0">(DE-588)4138369-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kingman, J. F. C.XXtIntroduction to measure and probability</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-09804-5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511662478</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029354860</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511662478</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511662478</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4151278-9 Einführung gnd-content |
genre_facet | Einführung |
id | DE-604.BV043945889 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:24Z |
institution | BVB |
isbn | 9780511662478 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029354860 |
oclc_num | 850547136 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (vi, 266 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1973 |
publishDateSearch | 1973 |
publishDateSort | 1973 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Taylor, S. J. Verfasser aut Introduction to measure and integration by S.J. Taylor Introduction to Measure & Integration Cambridge Cambridge University Press 1973 1 online resource (vi, 266 pages) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 05 Oct 2015) This paperback, which comprises the first part of Introduction to Measure and Probability by J. F. C. Kingman and S. J. Taylor, gives a self-contained treatment of the theory of finite measures in general spaces at the undergraduate level. It sets the material out in a form which not only provides an introduction for intending specialists in measure theory but also meets the needs of students of probability. The theory of measure and integration is presented for general spaces, with Lebesgue measure and the Lebesgue integral considered as important examples whose special properties are obtained. The introduction to functional analysis which follows covers the material to probability theory and also the basic theory of L2-spaces, important in modern physics. A large number of examples is included; these form an essential part of the development Measure theory Integrals, Generalized Integration Mathematik (DE-588)4072852-3 gnd rswk-swf Integrationstheorie (DE-588)4138369-2 gnd rswk-swf Maßtheorie (DE-588)4074626-4 gnd rswk-swf 1\p (DE-588)4151278-9 Einführung gnd-content Maßtheorie (DE-588)4074626-4 s 2\p DE-604 Integration Mathematik (DE-588)4072852-3 s 3\p DE-604 Integrationstheorie (DE-588)4138369-2 s 4\p DE-604 Kingman, J. F. C.XXtIntroduction to measure and probability Sonstige oth Erscheint auch als Druckausgabe 978-0-521-09804-5 https://doi.org/10.1017/CBO9780511662478 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Taylor, S. J. Introduction to measure and integration Measure theory Integrals, Generalized Integration Mathematik (DE-588)4072852-3 gnd Integrationstheorie (DE-588)4138369-2 gnd Maßtheorie (DE-588)4074626-4 gnd |
subject_GND | (DE-588)4072852-3 (DE-588)4138369-2 (DE-588)4074626-4 (DE-588)4151278-9 |
title | Introduction to measure and integration |
title_alt | Introduction to Measure & Integration |
title_auth | Introduction to measure and integration |
title_exact_search | Introduction to measure and integration |
title_full | Introduction to measure and integration by S.J. Taylor |
title_fullStr | Introduction to measure and integration by S.J. Taylor |
title_full_unstemmed | Introduction to measure and integration by S.J. Taylor |
title_short | Introduction to measure and integration |
title_sort | introduction to measure and integration |
topic | Measure theory Integrals, Generalized Integration Mathematik (DE-588)4072852-3 gnd Integrationstheorie (DE-588)4138369-2 gnd Maßtheorie (DE-588)4074626-4 gnd |
topic_facet | Measure theory Integrals, Generalized Integration Mathematik Integrationstheorie Maßtheorie Einführung |
url | https://doi.org/10.1017/CBO9780511662478 |
work_keys_str_mv | AT taylorsj introductiontomeasureandintegration AT kingmanjfcxxtintroductiontomeasureandprobability introductiontomeasureandintegration AT taylorsj introductiontomeasureintegration AT kingmanjfcxxtintroductiontomeasureandprobability introductiontomeasureintegration |