Results and problems in combinatorial geometry:
In this short book, the authors discuss three types of problems from combinatorial geometry: Borsuk's partition problem, covering convex bodies by smaller homothetic bodies, and the illumination problem. They show how closely related these problems are to each other. The presentation is element...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1985
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | In this short book, the authors discuss three types of problems from combinatorial geometry: Borsuk's partition problem, covering convex bodies by smaller homothetic bodies, and the illumination problem. They show how closely related these problems are to each other. The presentation is elementary, with no more than high-school mathematics and an interest in geometry required to follow the arguments. Most of the discussion is restricted to two- and three-dimensional Euclidean space, though sometimes more general results and problems are given. Thus even the mathematically unsophisticated reader can grasp some of the results of a branch of twentieth-century mathematics that has applications in such disciplines as mathematical programming, operations research and theoretical computer science. At the end of the book the authors have collected together a set of unsolved and partially solved problems that a sixth-form student should be able to understand and even attempt to solve |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (108 pages) |
ISBN: | 9780511569258 |
DOI: | 10.1017/CBO9780511569258 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043945820 | ||
003 | DE-604 | ||
005 | 20180716 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1985 |||| o||u| ||||||eng d | ||
020 | |a 9780511569258 |c Online |9 978-0-511-56925-8 | ||
024 | 7 | |a 10.1017/CBO9780511569258 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511569258 | ||
035 | |a (OCoLC)849796297 | ||
035 | |a (DE-599)BVBBV043945820 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 516.2/3 |2 19eng | |
084 | |a SK 380 |0 (DE-625)143235: |2 rvk | ||
100 | 1 | |a Boltjanskij, Vladimir G. |d 1925-2019 |e Verfasser |0 (DE-588)122968050 |4 aut | |
245 | 1 | 0 | |a Results and problems in combinatorial geometry |c V.G. Boltjansky and I. Ts. Gohberg |
246 | 1 | 3 | |a Results & Problems in Combinatorial Geometry |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1985 | |
300 | |a 1 online resource (108 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a In this short book, the authors discuss three types of problems from combinatorial geometry: Borsuk's partition problem, covering convex bodies by smaller homothetic bodies, and the illumination problem. They show how closely related these problems are to each other. The presentation is elementary, with no more than high-school mathematics and an interest in geometry required to follow the arguments. Most of the discussion is restricted to two- and three-dimensional Euclidean space, though sometimes more general results and problems are given. Thus even the mathematically unsophisticated reader can grasp some of the results of a branch of twentieth-century mathematics that has applications in such disciplines as mathematical programming, operations research and theoretical computer science. At the end of the book the authors have collected together a set of unsolved and partially solved problems that a sixth-form student should be able to understand and even attempt to solve | ||
650 | 4 | |a Geometry, Solid | |
650 | 4 | |a Convex domains | |
650 | 0 | 7 | |a Kombinatorische Geometrie |0 (DE-588)4140733-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Konvexität |0 (DE-588)4114284-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kombinatorik |0 (DE-588)4031824-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geometrie |0 (DE-588)4020236-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kombinatorik |0 (DE-588)4031824-2 |D s |
689 | 0 | 1 | |a Geometrie |0 (DE-588)4020236-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Kombinatorische Geometrie |0 (DE-588)4140733-7 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Konvexität |0 (DE-588)4114284-6 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
700 | 1 | |a Gohberg, Yiśrāʿēl Z. |d 1928-2009 |e Sonstige |0 (DE-588)118915878 |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-26298-9 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-26923-0 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511569258 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029354791 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511569258 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511569258 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176892418326528 |
---|---|
any_adam_object | |
author | Boltjanskij, Vladimir G. 1925-2019 |
author_GND | (DE-588)122968050 (DE-588)118915878 |
author_facet | Boltjanskij, Vladimir G. 1925-2019 |
author_role | aut |
author_sort | Boltjanskij, Vladimir G. 1925-2019 |
author_variant | v g b vg vgb |
building | Verbundindex |
bvnumber | BV043945820 |
classification_rvk | SK 380 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511569258 (OCoLC)849796297 (DE-599)BVBBV043945820 |
dewey-full | 516.2/3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.2/3 |
dewey-search | 516.2/3 |
dewey-sort | 3516.2 13 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511569258 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03590nmm a2200613zc 4500</leader><controlfield tag="001">BV043945820</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180716 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1985 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511569258</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-56925-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511569258</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511569258</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)849796297</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043945820</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.2/3</subfield><subfield code="2">19eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 380</subfield><subfield code="0">(DE-625)143235:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Boltjanskij, Vladimir G.</subfield><subfield code="d">1925-2019</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)122968050</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Results and problems in combinatorial geometry</subfield><subfield code="c">V.G. Boltjansky and I. Ts. Gohberg</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Results & Problems in Combinatorial Geometry</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1985</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (108 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this short book, the authors discuss three types of problems from combinatorial geometry: Borsuk's partition problem, covering convex bodies by smaller homothetic bodies, and the illumination problem. They show how closely related these problems are to each other. The presentation is elementary, with no more than high-school mathematics and an interest in geometry required to follow the arguments. Most of the discussion is restricted to two- and three-dimensional Euclidean space, though sometimes more general results and problems are given. Thus even the mathematically unsophisticated reader can grasp some of the results of a branch of twentieth-century mathematics that has applications in such disciplines as mathematical programming, operations research and theoretical computer science. At the end of the book the authors have collected together a set of unsolved and partially solved problems that a sixth-form student should be able to understand and even attempt to solve</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Solid</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convex domains</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kombinatorische Geometrie</subfield><subfield code="0">(DE-588)4140733-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konvexität</subfield><subfield code="0">(DE-588)4114284-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kombinatorik</subfield><subfield code="0">(DE-588)4031824-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kombinatorik</subfield><subfield code="0">(DE-588)4031824-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Kombinatorische Geometrie</subfield><subfield code="0">(DE-588)4140733-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Konvexität</subfield><subfield code="0">(DE-588)4114284-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gohberg, Yiśrāʿēl Z.</subfield><subfield code="d">1928-2009</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)118915878</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-26298-9</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-26923-0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511569258</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029354791</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511569258</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511569258</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043945820 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:24Z |
institution | BVB |
isbn | 9780511569258 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029354791 |
oclc_num | 849796297 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (108 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1985 |
publishDateSearch | 1985 |
publishDateSort | 1985 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Boltjanskij, Vladimir G. 1925-2019 Verfasser (DE-588)122968050 aut Results and problems in combinatorial geometry V.G. Boltjansky and I. Ts. Gohberg Results & Problems in Combinatorial Geometry Cambridge Cambridge University Press 1985 1 online resource (108 pages) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 05 Oct 2015) In this short book, the authors discuss three types of problems from combinatorial geometry: Borsuk's partition problem, covering convex bodies by smaller homothetic bodies, and the illumination problem. They show how closely related these problems are to each other. The presentation is elementary, with no more than high-school mathematics and an interest in geometry required to follow the arguments. Most of the discussion is restricted to two- and three-dimensional Euclidean space, though sometimes more general results and problems are given. Thus even the mathematically unsophisticated reader can grasp some of the results of a branch of twentieth-century mathematics that has applications in such disciplines as mathematical programming, operations research and theoretical computer science. At the end of the book the authors have collected together a set of unsolved and partially solved problems that a sixth-form student should be able to understand and even attempt to solve Geometry, Solid Convex domains Kombinatorische Geometrie (DE-588)4140733-7 gnd rswk-swf Konvexität (DE-588)4114284-6 gnd rswk-swf Kombinatorik (DE-588)4031824-2 gnd rswk-swf Geometrie (DE-588)4020236-7 gnd rswk-swf Kombinatorik (DE-588)4031824-2 s Geometrie (DE-588)4020236-7 s 1\p DE-604 Kombinatorische Geometrie (DE-588)4140733-7 s 2\p DE-604 Konvexität (DE-588)4114284-6 s 3\p DE-604 Gohberg, Yiśrāʿēl Z. 1928-2009 Sonstige (DE-588)118915878 oth Erscheint auch als Druckausgabe 978-0-521-26298-9 Erscheint auch als Druckausgabe 978-0-521-26923-0 https://doi.org/10.1017/CBO9780511569258 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Boltjanskij, Vladimir G. 1925-2019 Results and problems in combinatorial geometry Geometry, Solid Convex domains Kombinatorische Geometrie (DE-588)4140733-7 gnd Konvexität (DE-588)4114284-6 gnd Kombinatorik (DE-588)4031824-2 gnd Geometrie (DE-588)4020236-7 gnd |
subject_GND | (DE-588)4140733-7 (DE-588)4114284-6 (DE-588)4031824-2 (DE-588)4020236-7 |
title | Results and problems in combinatorial geometry |
title_alt | Results & Problems in Combinatorial Geometry |
title_auth | Results and problems in combinatorial geometry |
title_exact_search | Results and problems in combinatorial geometry |
title_full | Results and problems in combinatorial geometry V.G. Boltjansky and I. Ts. Gohberg |
title_fullStr | Results and problems in combinatorial geometry V.G. Boltjansky and I. Ts. Gohberg |
title_full_unstemmed | Results and problems in combinatorial geometry V.G. Boltjansky and I. Ts. Gohberg |
title_short | Results and problems in combinatorial geometry |
title_sort | results and problems in combinatorial geometry |
topic | Geometry, Solid Convex domains Kombinatorische Geometrie (DE-588)4140733-7 gnd Konvexität (DE-588)4114284-6 gnd Kombinatorik (DE-588)4031824-2 gnd Geometrie (DE-588)4020236-7 gnd |
topic_facet | Geometry, Solid Convex domains Kombinatorische Geometrie Konvexität Kombinatorik Geometrie |
url | https://doi.org/10.1017/CBO9780511569258 |
work_keys_str_mv | AT boltjanskijvladimirg resultsandproblemsincombinatorialgeometry AT gohbergyisraʿelz resultsandproblemsincombinatorialgeometry AT boltjanskijvladimirg resultsproblemsincombinatorialgeometry AT gohbergyisraʿelz resultsproblemsincombinatorialgeometry |