Dual models:
In Dual Models, written in the same enthusiastic style as its predecessors Polyhedron Models and Spherical Models, Magnus J. Wenninger presents the complete set of uniform duals of uniform polyhedral, thus rounding out a significant body of knowledge with respect to polyhedral forms. He begins with...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge ; London ; New York ; New Rochelle ; Melbourne ; Sydney
Cambridge University Press
[1983]
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UPA01 Volltext |
Zusammenfassung: | In Dual Models, written in the same enthusiastic style as its predecessors Polyhedron Models and Spherical Models, Magnus J. Wenninger presents the complete set of uniform duals of uniform polyhedral, thus rounding out a significant body of knowledge with respect to polyhedral forms. He begins with the simplest convex solids but then goes on to show how all the more difficult, non convex, uniform polyhedral duals can be derived from a geometric theorem on duality that unifies and systematizes the entire set of such duals. Many of these complex shapes are published here for the first time. Models made by the author are shown in photographs, and these, along with line drawings, diagrams, and commentary, invite readers to undertake the task of making the models, using index cards or tag paper and glue as construction materials. The mathematics is deliberately kept at the high school or secondary level, and hence the book presumes at most some knowledge of geometry and ordinary trigonometry and the use of a scientific type small electronic calculator. The book will be useful as enrichment material for the mathematics classroom and can serve equally well as a source book of ideas for artists and designers of decorative devices or simply as a hobby book in recreational mathematics |
Beschreibung: | 1 Online-Ressource (xii, 156 Seiten) |
ISBN: | 9780511569371 |
DOI: | 10.1017/CBO9780511569371 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043945815 | ||
003 | DE-604 | ||
005 | 20220921 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1983 |||| o||u| ||||||eng d | ||
020 | |a 9780511569371 |c Online |9 978-0-511-56937-1 | ||
024 | 7 | |a 10.1017/CBO9780511569371 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511569371 | ||
035 | |a (OCoLC)992849104 | ||
035 | |a (DE-599)BVBBV043945815 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-739 | ||
082 | 0 | |a 516/.15 |2 19eng | |
084 | |a SB 850 |0 (DE-625)142602: |2 rvk | ||
084 | |a SK 380 |0 (DE-625)143235: |2 rvk | ||
100 | 1 | |a Wenninger, Magnus J. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Dual models |c Magnus J. Wenninger |
264 | 1 | |a Cambridge ; London ; New York ; New Rochelle ; Melbourne ; Sydney |b Cambridge University Press |c [1983] | |
300 | |a 1 Online-Ressource (xii, 156 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a In Dual Models, written in the same enthusiastic style as its predecessors Polyhedron Models and Spherical Models, Magnus J. Wenninger presents the complete set of uniform duals of uniform polyhedral, thus rounding out a significant body of knowledge with respect to polyhedral forms. He begins with the simplest convex solids but then goes on to show how all the more difficult, non convex, uniform polyhedral duals can be derived from a geometric theorem on duality that unifies and systematizes the entire set of such duals. Many of these complex shapes are published here for the first time. Models made by the author are shown in photographs, and these, along with line drawings, diagrams, and commentary, invite readers to undertake the task of making the models, using index cards or tag paper and glue as construction materials. The mathematics is deliberately kept at the high school or secondary level, and hence the book presumes at most some knowledge of geometry and ordinary trigonometry and the use of a scientific type small electronic calculator. The book will be useful as enrichment material for the mathematics classroom and can serve equally well as a source book of ideas for artists and designers of decorative devices or simply as a hobby book in recreational mathematics | ||
650 | 4 | |a Polyhedra / Models | |
650 | 0 | 7 | |a Dualität |0 (DE-588)4013161-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Polyeder |0 (DE-588)4132101-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Polyeder |0 (DE-588)4132101-7 |D s |
689 | 0 | 1 | |a Dualität |0 (DE-588)4013161-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 978-0-521-24524-1 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Paperback |z 978-0-521-54325-5 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511569371 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029354786 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511569371 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511569371 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511569371 |l UPA01 |p ZDB-20-CBO |q UPA_PDA_CBO_Kauf2021 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176892413083648 |
---|---|
any_adam_object | |
author | Wenninger, Magnus J. |
author_facet | Wenninger, Magnus J. |
author_role | aut |
author_sort | Wenninger, Magnus J. |
author_variant | m j w mj mjw |
building | Verbundindex |
bvnumber | BV043945815 |
classification_rvk | SB 850 SK 380 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511569371 (OCoLC)992849104 (DE-599)BVBBV043945815 |
dewey-full | 516/.15 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516/.15 |
dewey-search | 516/.15 |
dewey-sort | 3516 215 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511569371 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03323nmm a2200493zc 4500</leader><controlfield tag="001">BV043945815</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220921 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1983 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511569371</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-56937-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511569371</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511569371</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)992849104</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043945815</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-739</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516/.15</subfield><subfield code="2">19eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SB 850</subfield><subfield code="0">(DE-625)142602:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 380</subfield><subfield code="0">(DE-625)143235:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wenninger, Magnus J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dual models</subfield><subfield code="c">Magnus J. Wenninger</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge ; London ; New York ; New Rochelle ; Melbourne ; Sydney</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">[1983]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xii, 156 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In Dual Models, written in the same enthusiastic style as its predecessors Polyhedron Models and Spherical Models, Magnus J. Wenninger presents the complete set of uniform duals of uniform polyhedral, thus rounding out a significant body of knowledge with respect to polyhedral forms. He begins with the simplest convex solids but then goes on to show how all the more difficult, non convex, uniform polyhedral duals can be derived from a geometric theorem on duality that unifies and systematizes the entire set of such duals. Many of these complex shapes are published here for the first time. Models made by the author are shown in photographs, and these, along with line drawings, diagrams, and commentary, invite readers to undertake the task of making the models, using index cards or tag paper and glue as construction materials. The mathematics is deliberately kept at the high school or secondary level, and hence the book presumes at most some knowledge of geometry and ordinary trigonometry and the use of a scientific type small electronic calculator. The book will be useful as enrichment material for the mathematics classroom and can serve equally well as a source book of ideas for artists and designers of decorative devices or simply as a hobby book in recreational mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polyhedra / Models</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dualität</subfield><subfield code="0">(DE-588)4013161-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Polyeder</subfield><subfield code="0">(DE-588)4132101-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Polyeder</subfield><subfield code="0">(DE-588)4132101-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Dualität</subfield><subfield code="0">(DE-588)4013161-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-0-521-24524-1</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Paperback</subfield><subfield code="z">978-0-521-54325-5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511569371</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029354786</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511569371</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511569371</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511569371</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UPA_PDA_CBO_Kauf2021</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043945815 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:24Z |
institution | BVB |
isbn | 9780511569371 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029354786 |
oclc_num | 992849104 |
open_access_boolean | |
owner | DE-12 DE-92 DE-739 |
owner_facet | DE-12 DE-92 DE-739 |
physical | 1 Online-Ressource (xii, 156 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UPA_PDA_CBO_Kauf2021 |
publishDate | 1983 |
publishDateSearch | 1983 |
publishDateSort | 1983 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Wenninger, Magnus J. Verfasser aut Dual models Magnus J. Wenninger Cambridge ; London ; New York ; New Rochelle ; Melbourne ; Sydney Cambridge University Press [1983] 1 Online-Ressource (xii, 156 Seiten) txt rdacontent c rdamedia cr rdacarrier In Dual Models, written in the same enthusiastic style as its predecessors Polyhedron Models and Spherical Models, Magnus J. Wenninger presents the complete set of uniform duals of uniform polyhedral, thus rounding out a significant body of knowledge with respect to polyhedral forms. He begins with the simplest convex solids but then goes on to show how all the more difficult, non convex, uniform polyhedral duals can be derived from a geometric theorem on duality that unifies and systematizes the entire set of such duals. Many of these complex shapes are published here for the first time. Models made by the author are shown in photographs, and these, along with line drawings, diagrams, and commentary, invite readers to undertake the task of making the models, using index cards or tag paper and glue as construction materials. The mathematics is deliberately kept at the high school or secondary level, and hence the book presumes at most some knowledge of geometry and ordinary trigonometry and the use of a scientific type small electronic calculator. The book will be useful as enrichment material for the mathematics classroom and can serve equally well as a source book of ideas for artists and designers of decorative devices or simply as a hobby book in recreational mathematics Polyhedra / Models Dualität (DE-588)4013161-0 gnd rswk-swf Polyeder (DE-588)4132101-7 gnd rswk-swf Polyeder (DE-588)4132101-7 s Dualität (DE-588)4013161-0 s 1\p DE-604 Erscheint auch als Druck-Ausgabe, Hardcover 978-0-521-24524-1 Erscheint auch als Druck-Ausgabe, Paperback 978-0-521-54325-5 https://doi.org/10.1017/CBO9780511569371 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Wenninger, Magnus J. Dual models Polyhedra / Models Dualität (DE-588)4013161-0 gnd Polyeder (DE-588)4132101-7 gnd |
subject_GND | (DE-588)4013161-0 (DE-588)4132101-7 |
title | Dual models |
title_auth | Dual models |
title_exact_search | Dual models |
title_full | Dual models Magnus J. Wenninger |
title_fullStr | Dual models Magnus J. Wenninger |
title_full_unstemmed | Dual models Magnus J. Wenninger |
title_short | Dual models |
title_sort | dual models |
topic | Polyhedra / Models Dualität (DE-588)4013161-0 gnd Polyeder (DE-588)4132101-7 gnd |
topic_facet | Polyhedra / Models Dualität Polyeder |
url | https://doi.org/10.1017/CBO9780511569371 |
work_keys_str_mv | AT wenningermagnusj dualmodels |