Differential analysis: differentiation, differential equations, and differential inequalities
T. M. Flett was a Professor of Pure Mathematics at the University of Sheffield from 1967 until his death in 1976. This book, which he had almost finished, has been edited for publication by Professor J. S. Pym. This text is a treatise on the differential calculus of functions taking values in normed...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1980
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | T. M. Flett was a Professor of Pure Mathematics at the University of Sheffield from 1967 until his death in 1976. This book, which he had almost finished, has been edited for publication by Professor J. S. Pym. This text is a treatise on the differential calculus of functions taking values in normed spaces. The exposition is essentially elementary, though on are occasions appeal is made to deeper results. The theory of vector-valued functions of one real variable is particularly straightforward, and this forms the substance of the initial chapter. A large part of the book is devoted to applications. An extensive study is made of ordinary differential equations. Extremum problems for functions of a vector variable lead to the calculus of variations and general optimisation problems. Other applications include the geometry of tangents and the Newton-Kantorovich method in normed spaces. The three historical notes show how the masters of the past (Cauchy, Peano…) created the subject by examining in depth the evolution of certain theories and proofs |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (vii, 359 pages) |
ISBN: | 9780511897191 |
DOI: | 10.1017/CBO9780511897191 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043945802 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1980 |||| o||u| ||||||eng d | ||
020 | |a 9780511897191 |c Online |9 978-0-511-89719-1 | ||
024 | 7 | |a 10.1017/CBO9780511897191 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511897191 | ||
035 | |a (OCoLC)849796043 | ||
035 | |a (DE-599)BVBBV043945802 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 515/.33 |2 18eng | |
084 | |a SK 520 |0 (DE-625)143244: |2 rvk | ||
100 | 1 | |a Flett, T. M. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Differential analysis |b differentiation, differential equations, and differential inequalities |c T.M. Flett |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1980 | |
300 | |a 1 online resource (vii, 359 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a T. M. Flett was a Professor of Pure Mathematics at the University of Sheffield from 1967 until his death in 1976. This book, which he had almost finished, has been edited for publication by Professor J. S. Pym. This text is a treatise on the differential calculus of functions taking values in normed spaces. The exposition is essentially elementary, though on are occasions appeal is made to deeper results. The theory of vector-valued functions of one real variable is particularly straightforward, and this forms the substance of the initial chapter. A large part of the book is devoted to applications. An extensive study is made of ordinary differential equations. Extremum problems for functions of a vector variable lead to the calculus of variations and general optimisation problems. Other applications include the geometry of tangents and the Newton-Kantorovich method in normed spaces. The three historical notes show how the masters of the past (Cauchy, Peano…) created the subject by examining in depth the evolution of certain theories and proofs | ||
650 | 4 | |a Differential calculus | |
650 | 4 | |a Differential equations | |
650 | 4 | |a Differential inequalities | |
650 | 0 | 7 | |a Analysis |0 (DE-588)4001865-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differentiation |g Mathematik |0 (DE-588)4149787-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differentialrechnung |0 (DE-588)4012252-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differentialgleichung |0 (DE-588)4012249-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gewöhnliche Differentialgleichung |0 (DE-588)4020929-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Fréchet-Differential |0 (DE-588)4155253-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differentialungleichung |0 (DE-588)4149785-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Differentialrechnung |0 (DE-588)4012252-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Differentialgleichung |0 (DE-588)4012249-9 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Gewöhnliche Differentialgleichung |0 (DE-588)4020929-5 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Differentialungleichung |0 (DE-588)4149785-5 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
689 | 4 | 0 | |a Differentiation |g Mathematik |0 (DE-588)4149787-9 |D s |
689 | 4 | |8 5\p |5 DE-604 | |
689 | 5 | 0 | |a Fréchet-Differential |0 (DE-588)4155253-2 |D s |
689 | 5 | |8 6\p |5 DE-604 | |
689 | 6 | 0 | |a Analysis |0 (DE-588)4001865-9 |D s |
689 | 6 | |8 7\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-09030-8 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-22420-8 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511897191 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029354773 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 5\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 6\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 7\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511897191 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511897191 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176892390014976 |
---|---|
any_adam_object | |
author | Flett, T. M. |
author_facet | Flett, T. M. |
author_role | aut |
author_sort | Flett, T. M. |
author_variant | t m f tm tmf |
building | Verbundindex |
bvnumber | BV043945802 |
classification_rvk | SK 520 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511897191 (OCoLC)849796043 (DE-599)BVBBV043945802 |
dewey-full | 515/.33 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.33 |
dewey-search | 515/.33 |
dewey-sort | 3515 233 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511897191 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04478nmm a2200769zc 4500</leader><controlfield tag="001">BV043945802</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1980 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511897191</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-89719-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511897191</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511897191</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)849796043</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043945802</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.33</subfield><subfield code="2">18eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 520</subfield><subfield code="0">(DE-625)143244:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Flett, T. M.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Differential analysis</subfield><subfield code="b">differentiation, differential equations, and differential inequalities</subfield><subfield code="c">T.M. Flett</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1980</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (vii, 359 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">T. M. Flett was a Professor of Pure Mathematics at the University of Sheffield from 1967 until his death in 1976. This book, which he had almost finished, has been edited for publication by Professor J. S. Pym. This text is a treatise on the differential calculus of functions taking values in normed spaces. The exposition is essentially elementary, though on are occasions appeal is made to deeper results. The theory of vector-valued functions of one real variable is particularly straightforward, and this forms the substance of the initial chapter. A large part of the book is devoted to applications. An extensive study is made of ordinary differential equations. Extremum problems for functions of a vector variable lead to the calculus of variations and general optimisation problems. Other applications include the geometry of tangents and the Newton-Kantorovich method in normed spaces. The three historical notes show how the masters of the past (Cauchy, Peano…) created the subject by examining in depth the evolution of certain theories and proofs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential calculus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential inequalities</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Analysis</subfield><subfield code="0">(DE-588)4001865-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentiation</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4149787-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialrechnung</subfield><subfield code="0">(DE-588)4012252-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialgleichung</subfield><subfield code="0">(DE-588)4012249-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gewöhnliche Differentialgleichung</subfield><subfield code="0">(DE-588)4020929-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fréchet-Differential</subfield><subfield code="0">(DE-588)4155253-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialungleichung</subfield><subfield code="0">(DE-588)4149785-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Differentialrechnung</subfield><subfield code="0">(DE-588)4012252-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Differentialgleichung</subfield><subfield code="0">(DE-588)4012249-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Gewöhnliche Differentialgleichung</subfield><subfield code="0">(DE-588)4020929-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Differentialungleichung</subfield><subfield code="0">(DE-588)4149785-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Differentiation</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4149787-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="5" ind2="0"><subfield code="a">Fréchet-Differential</subfield><subfield code="0">(DE-588)4155253-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="5" ind2=" "><subfield code="8">6\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="6" ind2="0"><subfield code="a">Analysis</subfield><subfield code="0">(DE-588)4001865-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="6" ind2=" "><subfield code="8">7\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-09030-8</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-22420-8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511897191</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029354773</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">6\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">7\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511897191</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511897191</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043945802 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:24Z |
institution | BVB |
isbn | 9780511897191 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029354773 |
oclc_num | 849796043 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (vii, 359 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1980 |
publishDateSearch | 1980 |
publishDateSort | 1980 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Flett, T. M. Verfasser aut Differential analysis differentiation, differential equations, and differential inequalities T.M. Flett Cambridge Cambridge University Press 1980 1 online resource (vii, 359 pages) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 05 Oct 2015) T. M. Flett was a Professor of Pure Mathematics at the University of Sheffield from 1967 until his death in 1976. This book, which he had almost finished, has been edited for publication by Professor J. S. Pym. This text is a treatise on the differential calculus of functions taking values in normed spaces. The exposition is essentially elementary, though on are occasions appeal is made to deeper results. The theory of vector-valued functions of one real variable is particularly straightforward, and this forms the substance of the initial chapter. A large part of the book is devoted to applications. An extensive study is made of ordinary differential equations. Extremum problems for functions of a vector variable lead to the calculus of variations and general optimisation problems. Other applications include the geometry of tangents and the Newton-Kantorovich method in normed spaces. The three historical notes show how the masters of the past (Cauchy, Peano…) created the subject by examining in depth the evolution of certain theories and proofs Differential calculus Differential equations Differential inequalities Analysis (DE-588)4001865-9 gnd rswk-swf Differentiation Mathematik (DE-588)4149787-9 gnd rswk-swf Differentialrechnung (DE-588)4012252-9 gnd rswk-swf Differentialgleichung (DE-588)4012249-9 gnd rswk-swf Gewöhnliche Differentialgleichung (DE-588)4020929-5 gnd rswk-swf Fréchet-Differential (DE-588)4155253-2 gnd rswk-swf Differentialungleichung (DE-588)4149785-5 gnd rswk-swf Differentialrechnung (DE-588)4012252-9 s 1\p DE-604 Differentialgleichung (DE-588)4012249-9 s 2\p DE-604 Gewöhnliche Differentialgleichung (DE-588)4020929-5 s 3\p DE-604 Differentialungleichung (DE-588)4149785-5 s 4\p DE-604 Differentiation Mathematik (DE-588)4149787-9 s 5\p DE-604 Fréchet-Differential (DE-588)4155253-2 s 6\p DE-604 Analysis (DE-588)4001865-9 s 7\p DE-604 Erscheint auch als Druckausgabe 978-0-521-09030-8 Erscheint auch als Druckausgabe 978-0-521-22420-8 https://doi.org/10.1017/CBO9780511897191 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 5\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 6\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 7\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Flett, T. M. Differential analysis differentiation, differential equations, and differential inequalities Differential calculus Differential equations Differential inequalities Analysis (DE-588)4001865-9 gnd Differentiation Mathematik (DE-588)4149787-9 gnd Differentialrechnung (DE-588)4012252-9 gnd Differentialgleichung (DE-588)4012249-9 gnd Gewöhnliche Differentialgleichung (DE-588)4020929-5 gnd Fréchet-Differential (DE-588)4155253-2 gnd Differentialungleichung (DE-588)4149785-5 gnd |
subject_GND | (DE-588)4001865-9 (DE-588)4149787-9 (DE-588)4012252-9 (DE-588)4012249-9 (DE-588)4020929-5 (DE-588)4155253-2 (DE-588)4149785-5 |
title | Differential analysis differentiation, differential equations, and differential inequalities |
title_auth | Differential analysis differentiation, differential equations, and differential inequalities |
title_exact_search | Differential analysis differentiation, differential equations, and differential inequalities |
title_full | Differential analysis differentiation, differential equations, and differential inequalities T.M. Flett |
title_fullStr | Differential analysis differentiation, differential equations, and differential inequalities T.M. Flett |
title_full_unstemmed | Differential analysis differentiation, differential equations, and differential inequalities T.M. Flett |
title_short | Differential analysis |
title_sort | differential analysis differentiation differential equations and differential inequalities |
title_sub | differentiation, differential equations, and differential inequalities |
topic | Differential calculus Differential equations Differential inequalities Analysis (DE-588)4001865-9 gnd Differentiation Mathematik (DE-588)4149787-9 gnd Differentialrechnung (DE-588)4012252-9 gnd Differentialgleichung (DE-588)4012249-9 gnd Gewöhnliche Differentialgleichung (DE-588)4020929-5 gnd Fréchet-Differential (DE-588)4155253-2 gnd Differentialungleichung (DE-588)4149785-5 gnd |
topic_facet | Differential calculus Differential equations Differential inequalities Analysis Differentiation Mathematik Differentialrechnung Differentialgleichung Gewöhnliche Differentialgleichung Fréchet-Differential Differentialungleichung |
url | https://doi.org/10.1017/CBO9780511897191 |
work_keys_str_mv | AT fletttm differentialanalysisdifferentiationdifferentialequationsanddifferentialinequalities |