Modular forms and functions:
This book provides an introduction to the theory of elliptic modular functions and forms, a subject of increasing interest because of its connexions with the theory of elliptic curves. Modular forms are generalisations of functions like theta functions. They can be expressed as Fourier series, and t...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1977
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | This book provides an introduction to the theory of elliptic modular functions and forms, a subject of increasing interest because of its connexions with the theory of elliptic curves. Modular forms are generalisations of functions like theta functions. They can be expressed as Fourier series, and the Fourier coefficients frequently possess multiplicative properties which lead to a correspondence between modular forms and Dirichlet series having Euler products. The Fourier coefficients also arise in certain representational problems in the theory of numbers, for example in the study of the number of ways in which a positive integer may be expressed as a sum of a given number of squares. The treatment of the theory presented here is fuller than is customary in a textbook on automorphic or modular forms, since it is not confined solely to modular forms of integral weight (dimension). It will be of interest to professional mathematicians as well as senior undergraduate and graduate students in pure mathematics |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xiii, 384 pages) |
ISBN: | 9780511566035 |
DOI: | 10.1017/CBO9780511566035 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043945796 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1977 |||| o||u| ||||||eng d | ||
020 | |a 9780511566035 |c Online |9 978-0-511-56603-5 | ||
024 | 7 | |a 10.1017/CBO9780511566035 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511566035 | ||
035 | |a (OCoLC)992849103 | ||
035 | |a (DE-599)BVBBV043945796 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 512.9/44 |2 19eng | |
084 | |a SK 180 |0 (DE-625)143222: |2 rvk | ||
084 | |a SK 700 |0 (DE-625)143253: |2 rvk | ||
084 | |a SK 750 |0 (DE-625)143254: |2 rvk | ||
100 | 1 | |a Rankin, Robert A. |d 1915- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Modular forms and functions |c Robert A. Rankin |
246 | 1 | 3 | |a Modular Forms & Functions |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1977 | |
300 | |a 1 online resource (xiii, 384 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a This book provides an introduction to the theory of elliptic modular functions and forms, a subject of increasing interest because of its connexions with the theory of elliptic curves. Modular forms are generalisations of functions like theta functions. They can be expressed as Fourier series, and the Fourier coefficients frequently possess multiplicative properties which lead to a correspondence between modular forms and Dirichlet series having Euler products. The Fourier coefficients also arise in certain representational problems in the theory of numbers, for example in the study of the number of ways in which a positive integer may be expressed as a sum of a given number of squares. The treatment of the theory presented here is fuller than is customary in a textbook on automorphic or modular forms, since it is not confined solely to modular forms of integral weight (dimension). It will be of interest to professional mathematicians as well as senior undergraduate and graduate students in pure mathematics | ||
650 | 4 | |a Forms, Modular | |
650 | 4 | |a Modular functions | |
650 | 0 | 7 | |a Automorphe Funktion |0 (DE-588)4143706-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Modulfunktion |0 (DE-588)4039855-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Modulform |0 (DE-588)4128299-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Modulform |0 (DE-588)4128299-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Modulfunktion |0 (DE-588)4039855-9 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Automorphe Funktion |0 (DE-588)4143706-8 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-09168-8 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-21212-0 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511566035 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029354767 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511566035 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511566035 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176892382674944 |
---|---|
any_adam_object | |
author | Rankin, Robert A. 1915- |
author_facet | Rankin, Robert A. 1915- |
author_role | aut |
author_sort | Rankin, Robert A. 1915- |
author_variant | r a r ra rar |
building | Verbundindex |
bvnumber | BV043945796 |
classification_rvk | SK 180 SK 700 SK 750 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511566035 (OCoLC)992849103 (DE-599)BVBBV043945796 |
dewey-full | 512.9/44 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.9/44 |
dewey-search | 512.9/44 |
dewey-sort | 3512.9 244 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511566035 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03428nmm a2200601zc 4500</leader><controlfield tag="001">BV043945796</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1977 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511566035</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-56603-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511566035</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511566035</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)992849103</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043945796</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.9/44</subfield><subfield code="2">19eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 180</subfield><subfield code="0">(DE-625)143222:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 700</subfield><subfield code="0">(DE-625)143253:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 750</subfield><subfield code="0">(DE-625)143254:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rankin, Robert A.</subfield><subfield code="d">1915-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modular forms and functions</subfield><subfield code="c">Robert A. Rankin</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Modular Forms & Functions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1977</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiii, 384 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book provides an introduction to the theory of elliptic modular functions and forms, a subject of increasing interest because of its connexions with the theory of elliptic curves. Modular forms are generalisations of functions like theta functions. They can be expressed as Fourier series, and the Fourier coefficients frequently possess multiplicative properties which lead to a correspondence between modular forms and Dirichlet series having Euler products. The Fourier coefficients also arise in certain representational problems in the theory of numbers, for example in the study of the number of ways in which a positive integer may be expressed as a sum of a given number of squares. The treatment of the theory presented here is fuller than is customary in a textbook on automorphic or modular forms, since it is not confined solely to modular forms of integral weight (dimension). It will be of interest to professional mathematicians as well as senior undergraduate and graduate students in pure mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Forms, Modular</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Modular functions</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Automorphe Funktion</subfield><subfield code="0">(DE-588)4143706-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Modulfunktion</subfield><subfield code="0">(DE-588)4039855-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Modulform</subfield><subfield code="0">(DE-588)4128299-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Modulform</subfield><subfield code="0">(DE-588)4128299-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Modulfunktion</subfield><subfield code="0">(DE-588)4039855-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Automorphe Funktion</subfield><subfield code="0">(DE-588)4143706-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-09168-8</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-21212-0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511566035</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029354767</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511566035</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511566035</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043945796 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:24Z |
institution | BVB |
isbn | 9780511566035 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029354767 |
oclc_num | 992849103 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xiii, 384 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1977 |
publishDateSearch | 1977 |
publishDateSort | 1977 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Rankin, Robert A. 1915- Verfasser aut Modular forms and functions Robert A. Rankin Modular Forms & Functions Cambridge Cambridge University Press 1977 1 online resource (xiii, 384 pages) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 05 Oct 2015) This book provides an introduction to the theory of elliptic modular functions and forms, a subject of increasing interest because of its connexions with the theory of elliptic curves. Modular forms are generalisations of functions like theta functions. They can be expressed as Fourier series, and the Fourier coefficients frequently possess multiplicative properties which lead to a correspondence between modular forms and Dirichlet series having Euler products. The Fourier coefficients also arise in certain representational problems in the theory of numbers, for example in the study of the number of ways in which a positive integer may be expressed as a sum of a given number of squares. The treatment of the theory presented here is fuller than is customary in a textbook on automorphic or modular forms, since it is not confined solely to modular forms of integral weight (dimension). It will be of interest to professional mathematicians as well as senior undergraduate and graduate students in pure mathematics Forms, Modular Modular functions Automorphe Funktion (DE-588)4143706-8 gnd rswk-swf Modulfunktion (DE-588)4039855-9 gnd rswk-swf Modulform (DE-588)4128299-1 gnd rswk-swf Modulform (DE-588)4128299-1 s 1\p DE-604 Modulfunktion (DE-588)4039855-9 s 2\p DE-604 Automorphe Funktion (DE-588)4143706-8 s 3\p DE-604 Erscheint auch als Druckausgabe 978-0-521-09168-8 Erscheint auch als Druckausgabe 978-0-521-21212-0 https://doi.org/10.1017/CBO9780511566035 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Rankin, Robert A. 1915- Modular forms and functions Forms, Modular Modular functions Automorphe Funktion (DE-588)4143706-8 gnd Modulfunktion (DE-588)4039855-9 gnd Modulform (DE-588)4128299-1 gnd |
subject_GND | (DE-588)4143706-8 (DE-588)4039855-9 (DE-588)4128299-1 |
title | Modular forms and functions |
title_alt | Modular Forms & Functions |
title_auth | Modular forms and functions |
title_exact_search | Modular forms and functions |
title_full | Modular forms and functions Robert A. Rankin |
title_fullStr | Modular forms and functions Robert A. Rankin |
title_full_unstemmed | Modular forms and functions Robert A. Rankin |
title_short | Modular forms and functions |
title_sort | modular forms and functions |
topic | Forms, Modular Modular functions Automorphe Funktion (DE-588)4143706-8 gnd Modulfunktion (DE-588)4039855-9 gnd Modulform (DE-588)4128299-1 gnd |
topic_facet | Forms, Modular Modular functions Automorphe Funktion Modulfunktion Modulform |
url | https://doi.org/10.1017/CBO9780511566035 |
work_keys_str_mv | AT rankinroberta modularformsandfunctions AT rankinroberta modularformsfunctions |