Lessons on rings, modules and multiplicities:
This volume provides a clear and self-contained introduction to important results in the theory of rings and modules. Assuming only the mathematical background provided by a normal undergraduate curriculum, the theory is derived by comparatively direct and simple methods. It will be useful to both u...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1968
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | This volume provides a clear and self-contained introduction to important results in the theory of rings and modules. Assuming only the mathematical background provided by a normal undergraduate curriculum, the theory is derived by comparatively direct and simple methods. It will be useful to both undergraduates and research students specialising in algebra. In his usual lucid style the author introduces the reader to advanced topics in a manner which makes them both interesting and easy to assimilate. As the text gives very full explanations, a number of well-ordered exercises are included at the end of each chapter. These lead on to further significant results and give the reader an opportunity to devise his own arguments and to test his understanding of the subject |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xiv, 444 pages) |
ISBN: | 9780511565922 |
DOI: | 10.1017/CBO9780511565922 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043945784 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1968 |||| o||u| ||||||eng d | ||
020 | |a 9780511565922 |c Online |9 978-0-511-56592-2 | ||
024 | 7 | |a 10.1017/CBO9780511565922 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511565922 | ||
035 | |a (OCoLC)890795664 | ||
035 | |a (DE-599)BVBBV043945784 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 512/.815 |2 19eng | |
084 | |a SK 230 |0 (DE-625)143225: |2 rvk | ||
100 | 1 | |a Northcott, D. G. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Lessons on rings, modules and multiplicities |c D.G. Northcott |
246 | 1 | 3 | |a Lessons on Rings, Modules & Multiplicities |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1968 | |
300 | |a 1 online resource (xiv, 444 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a This volume provides a clear and self-contained introduction to important results in the theory of rings and modules. Assuming only the mathematical background provided by a normal undergraduate curriculum, the theory is derived by comparatively direct and simple methods. It will be useful to both undergraduates and research students specialising in algebra. In his usual lucid style the author introduces the reader to advanced topics in a manner which makes them both interesting and easy to assimilate. As the text gives very full explanations, a number of well-ordered exercises are included at the end of each chapter. These lead on to further significant results and give the reader an opportunity to devise his own arguments and to test his understanding of the subject | ||
650 | 4 | |a Rings (Algebra) | |
650 | 4 | |a Modules (Algebra) | |
650 | 0 | 7 | |a Multiplizität |0 (DE-588)4170736-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Modultheorie |0 (DE-588)4170336-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ring |g Mathematik |0 (DE-588)4128084-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Modul |0 (DE-588)4129770-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Multiplizität |g Mathematik |0 (DE-588)4200398-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Ring |g Mathematik |0 (DE-588)4128084-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Modul |0 (DE-588)4129770-2 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Multiplizität |g Mathematik |0 (DE-588)4200398-2 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Multiplizität |0 (DE-588)4170736-9 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
689 | 4 | 0 | |a Modultheorie |0 (DE-588)4170336-4 |D s |
689 | 4 | |8 5\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-07151-2 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-09807-6 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511565922 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029354755 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 5\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511565922 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511565922 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176892353314817 |
---|---|
any_adam_object | |
author | Northcott, D. G. |
author_facet | Northcott, D. G. |
author_role | aut |
author_sort | Northcott, D. G. |
author_variant | d g n dg dgn |
building | Verbundindex |
bvnumber | BV043945784 |
classification_rvk | SK 230 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511565922 (OCoLC)890795664 (DE-599)BVBBV043945784 |
dewey-full | 512/.815 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.815 |
dewey-search | 512/.815 |
dewey-sort | 3512 3815 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511565922 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03590nmm a2200673zc 4500</leader><controlfield tag="001">BV043945784</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1968 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511565922</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-56592-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511565922</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511565922</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)890795664</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043945784</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.815</subfield><subfield code="2">19eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 230</subfield><subfield code="0">(DE-625)143225:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Northcott, D. G.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lessons on rings, modules and multiplicities</subfield><subfield code="c">D.G. Northcott</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Lessons on Rings, Modules & Multiplicities</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1968</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiv, 444 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This volume provides a clear and self-contained introduction to important results in the theory of rings and modules. Assuming only the mathematical background provided by a normal undergraduate curriculum, the theory is derived by comparatively direct and simple methods. It will be useful to both undergraduates and research students specialising in algebra. In his usual lucid style the author introduces the reader to advanced topics in a manner which makes them both interesting and easy to assimilate. As the text gives very full explanations, a number of well-ordered exercises are included at the end of each chapter. These lead on to further significant results and give the reader an opportunity to devise his own arguments and to test his understanding of the subject</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rings (Algebra)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Modules (Algebra)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Multiplizität</subfield><subfield code="0">(DE-588)4170736-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Modultheorie</subfield><subfield code="0">(DE-588)4170336-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ring</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4128084-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Modul</subfield><subfield code="0">(DE-588)4129770-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Multiplizität</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4200398-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Ring</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4128084-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Modul</subfield><subfield code="0">(DE-588)4129770-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Multiplizität</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4200398-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Multiplizität</subfield><subfield code="0">(DE-588)4170736-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Modultheorie</subfield><subfield code="0">(DE-588)4170336-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-07151-2</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-09807-6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511565922</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029354755</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511565922</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511565922</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043945784 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:24Z |
institution | BVB |
isbn | 9780511565922 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029354755 |
oclc_num | 890795664 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xiv, 444 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1968 |
publishDateSearch | 1968 |
publishDateSort | 1968 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Northcott, D. G. Verfasser aut Lessons on rings, modules and multiplicities D.G. Northcott Lessons on Rings, Modules & Multiplicities Cambridge Cambridge University Press 1968 1 online resource (xiv, 444 pages) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 05 Oct 2015) This volume provides a clear and self-contained introduction to important results in the theory of rings and modules. Assuming only the mathematical background provided by a normal undergraduate curriculum, the theory is derived by comparatively direct and simple methods. It will be useful to both undergraduates and research students specialising in algebra. In his usual lucid style the author introduces the reader to advanced topics in a manner which makes them both interesting and easy to assimilate. As the text gives very full explanations, a number of well-ordered exercises are included at the end of each chapter. These lead on to further significant results and give the reader an opportunity to devise his own arguments and to test his understanding of the subject Rings (Algebra) Modules (Algebra) Multiplizität (DE-588)4170736-9 gnd rswk-swf Modultheorie (DE-588)4170336-4 gnd rswk-swf Ring Mathematik (DE-588)4128084-2 gnd rswk-swf Modul (DE-588)4129770-2 gnd rswk-swf Multiplizität Mathematik (DE-588)4200398-2 gnd rswk-swf Ring Mathematik (DE-588)4128084-2 s 1\p DE-604 Modul (DE-588)4129770-2 s 2\p DE-604 Multiplizität Mathematik (DE-588)4200398-2 s 3\p DE-604 Multiplizität (DE-588)4170736-9 s 4\p DE-604 Modultheorie (DE-588)4170336-4 s 5\p DE-604 Erscheint auch als Druckausgabe 978-0-521-07151-2 Erscheint auch als Druckausgabe 978-0-521-09807-6 https://doi.org/10.1017/CBO9780511565922 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 5\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Northcott, D. G. Lessons on rings, modules and multiplicities Rings (Algebra) Modules (Algebra) Multiplizität (DE-588)4170736-9 gnd Modultheorie (DE-588)4170336-4 gnd Ring Mathematik (DE-588)4128084-2 gnd Modul (DE-588)4129770-2 gnd Multiplizität Mathematik (DE-588)4200398-2 gnd |
subject_GND | (DE-588)4170736-9 (DE-588)4170336-4 (DE-588)4128084-2 (DE-588)4129770-2 (DE-588)4200398-2 |
title | Lessons on rings, modules and multiplicities |
title_alt | Lessons on Rings, Modules & Multiplicities |
title_auth | Lessons on rings, modules and multiplicities |
title_exact_search | Lessons on rings, modules and multiplicities |
title_full | Lessons on rings, modules and multiplicities D.G. Northcott |
title_fullStr | Lessons on rings, modules and multiplicities D.G. Northcott |
title_full_unstemmed | Lessons on rings, modules and multiplicities D.G. Northcott |
title_short | Lessons on rings, modules and multiplicities |
title_sort | lessons on rings modules and multiplicities |
topic | Rings (Algebra) Modules (Algebra) Multiplizität (DE-588)4170736-9 gnd Modultheorie (DE-588)4170336-4 gnd Ring Mathematik (DE-588)4128084-2 gnd Modul (DE-588)4129770-2 gnd Multiplizität Mathematik (DE-588)4200398-2 gnd |
topic_facet | Rings (Algebra) Modules (Algebra) Multiplizität Modultheorie Ring Mathematik Modul Multiplizität Mathematik |
url | https://doi.org/10.1017/CBO9780511565922 |
work_keys_str_mv | AT northcottdg lessonsonringsmodulesandmultiplicities AT northcottdg lessonsonringsmodulesmultiplicities |