A handbook of terms used in algebra and analysis:
Degree students of mathematics are often daunted by the mass of definitions and theorems with which they must familiarize themselves. In the fields algebra and analysis this burden will now be reduced because in A Handbook of Terms they will find sufficient explanations of the terms and the symbolis...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1972
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | Degree students of mathematics are often daunted by the mass of definitions and theorems with which they must familiarize themselves. In the fields algebra and analysis this burden will now be reduced because in A Handbook of Terms they will find sufficient explanations of the terms and the symbolism that they are likely to come across in their university courses. Rather than being like an alphabetical dictionary, the order and division of the sections correspond to the way in which mathematics can be developed. This arrangement, together with the numerous notes and examples that are interspersed with the text, will give students some feeling for the underlying mathematics. Many of the terms are explained in several sections of the book, and alternative definitions are given. Theorems, too, are frequently stated at alternative levels of generality. Where possible, attention is drawn to those occasions where various authors ascribe different meanings to the same term. The handbook will be extremely useful to students for revision purposes. It is also an excellent source of reference for professional mathematicians, lecturers and teachers |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (ix, 238 pages) |
ISBN: | 9780511565748 |
DOI: | 10.1017/CBO9780511565748 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043945782 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1972 |||| o||u| ||||||eng d | ||
020 | |a 9780511565748 |c Online |9 978-0-511-56574-8 | ||
024 | 7 | |a 10.1017/CBO9780511565748 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511565748 | ||
035 | |a (OCoLC)992827092 | ||
035 | |a (DE-599)BVBBV043945782 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 512/.001/4 |2 18eng | |
084 | |a SB 400 |0 (DE-625)142597: |2 rvk | ||
084 | |a SK 110 |0 (DE-625)143215: |2 rvk | ||
100 | 1 | |a Howson, A. G. |d 1931- |e Verfasser |4 aut | |
245 | 1 | 0 | |a A handbook of terms used in algebra and analysis |c compiled by A.G. Howson |
246 | 1 | 3 | |a A Handbook of Terms used in Algebra & Analysis |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1972 | |
300 | |a 1 online resource (ix, 238 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a Some mathematical language -- Sets and functions -- Equivalence relations and quotient sets -- Number systems I -- Groups I -- Rings and fields -- Homomorphisms and quotient algebras -- Vector spaces and matrices -- Linear equations and rank -- Determinants and multilinear mappings -- Polynomials -- Groups II -- Number systems II -- Fields and polynomials -- Lattices and Boolean algebra -- Ordinal numbers -- Eigenvectors and eigenvalues -- Quadratic forms and inner products -- Categories and functors -- Metric spaces and continuity -- Topological spaces and continuity -- Metric spaces II -- The real numbers -- Real-valued functions of a real variable -- Differentiable functions of one variable -- Functions of several real variables -- Integration -- Infinite series and products -- Improper integrals -- Curves and arc length -- Functions of a complex variable -- Multiple integrals -- Logarithmic, exponential and trigonometric functions -- Vector algebra -- Vector calculus -- Line and surface integrals -- Measure and Lebesque integration -- Fourier series -- Appendix 1. Some 'named' theorems and properties -- Appendix 2. Alphabets used in mathematics | |
520 | |a Degree students of mathematics are often daunted by the mass of definitions and theorems with which they must familiarize themselves. In the fields algebra and analysis this burden will now be reduced because in A Handbook of Terms they will find sufficient explanations of the terms and the symbolism that they are likely to come across in their university courses. Rather than being like an alphabetical dictionary, the order and division of the sections correspond to the way in which mathematics can be developed. This arrangement, together with the numerous notes and examples that are interspersed with the text, will give students some feeling for the underlying mathematics. Many of the terms are explained in several sections of the book, and alternative definitions are given. Theorems, too, are frequently stated at alternative levels of generality. Where possible, attention is drawn to those occasions where various authors ascribe different meanings to the same term. The handbook will be extremely useful to students for revision purposes. It is also an excellent source of reference for professional mathematicians, lecturers and teachers | ||
650 | 4 | |a Algebra / Terminology | |
650 | 4 | |a Mathematical analysis / Terminology | |
650 | 0 | 7 | |a Wörterbuch |0 (DE-588)4066724-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Analysis |0 (DE-588)4001865-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algebra |0 (DE-588)4001156-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Algebra |0 (DE-588)4001156-2 |D s |
689 | 0 | 1 | |a Wörterbuch |0 (DE-588)4066724-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Analysis |0 (DE-588)4001865-9 |D s |
689 | 1 | 1 | |a Wörterbuch |0 (DE-588)4066724-8 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-08434-5 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-09695-9 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511565748 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029354753 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511565748 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511565748 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176892345974784 |
---|---|
any_adam_object | |
author | Howson, A. G. 1931- |
author_facet | Howson, A. G. 1931- |
author_role | aut |
author_sort | Howson, A. G. 1931- |
author_variant | a g h ag agh |
building | Verbundindex |
bvnumber | BV043945782 |
classification_rvk | SB 400 SK 110 |
collection | ZDB-20-CBO |
contents | Some mathematical language -- Sets and functions -- Equivalence relations and quotient sets -- Number systems I -- Groups I -- Rings and fields -- Homomorphisms and quotient algebras -- Vector spaces and matrices -- Linear equations and rank -- Determinants and multilinear mappings -- Polynomials -- Groups II -- Number systems II -- Fields and polynomials -- Lattices and Boolean algebra -- Ordinal numbers -- Eigenvectors and eigenvalues -- Quadratic forms and inner products -- Categories and functors -- Metric spaces and continuity -- Topological spaces and continuity -- Metric spaces II -- The real numbers -- Real-valued functions of a real variable -- Differentiable functions of one variable -- Functions of several real variables -- Integration -- Infinite series and products -- Improper integrals -- Curves and arc length -- Functions of a complex variable -- Multiple integrals -- Logarithmic, exponential and trigonometric functions -- Vector algebra -- Vector calculus -- Line and surface integrals -- Measure and Lebesque integration -- Fourier series -- Appendix 1. Some 'named' theorems and properties -- Appendix 2. Alphabets used in mathematics |
ctrlnum | (ZDB-20-CBO)CR9780511565748 (OCoLC)992827092 (DE-599)BVBBV043945782 |
dewey-full | 512/.001/4 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.001/4 |
dewey-search | 512/.001/4 |
dewey-sort | 3512 11 14 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511565748 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04678nmm a2200589zc 4500</leader><controlfield tag="001">BV043945782</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1972 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511565748</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-56574-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511565748</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511565748</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)992827092</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043945782</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.001/4</subfield><subfield code="2">18eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SB 400</subfield><subfield code="0">(DE-625)142597:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 110</subfield><subfield code="0">(DE-625)143215:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Howson, A. G.</subfield><subfield code="d">1931-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A handbook of terms used in algebra and analysis</subfield><subfield code="c">compiled by A.G. Howson</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">A Handbook of Terms used in Algebra & Analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1972</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (ix, 238 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Some mathematical language -- Sets and functions -- Equivalence relations and quotient sets -- Number systems I -- Groups I -- Rings and fields -- Homomorphisms and quotient algebras -- Vector spaces and matrices -- Linear equations and rank -- Determinants and multilinear mappings -- Polynomials -- Groups II -- Number systems II -- Fields and polynomials -- Lattices and Boolean algebra -- Ordinal numbers -- Eigenvectors and eigenvalues -- Quadratic forms and inner products -- Categories and functors -- Metric spaces and continuity -- Topological spaces and continuity -- Metric spaces II -- The real numbers -- Real-valued functions of a real variable -- Differentiable functions of one variable -- Functions of several real variables -- Integration -- Infinite series and products -- Improper integrals -- Curves and arc length -- Functions of a complex variable -- Multiple integrals -- Logarithmic, exponential and trigonometric functions -- Vector algebra -- Vector calculus -- Line and surface integrals -- Measure and Lebesque integration -- Fourier series -- Appendix 1. Some 'named' theorems and properties -- Appendix 2. Alphabets used in mathematics</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Degree students of mathematics are often daunted by the mass of definitions and theorems with which they must familiarize themselves. In the fields algebra and analysis this burden will now be reduced because in A Handbook of Terms they will find sufficient explanations of the terms and the symbolism that they are likely to come across in their university courses. Rather than being like an alphabetical dictionary, the order and division of the sections correspond to the way in which mathematics can be developed. This arrangement, together with the numerous notes and examples that are interspersed with the text, will give students some feeling for the underlying mathematics. Many of the terms are explained in several sections of the book, and alternative definitions are given. Theorems, too, are frequently stated at alternative levels of generality. Where possible, attention is drawn to those occasions where various authors ascribe different meanings to the same term. The handbook will be extremely useful to students for revision purposes. It is also an excellent source of reference for professional mathematicians, lecturers and teachers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra / Terminology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical analysis / Terminology</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wörterbuch</subfield><subfield code="0">(DE-588)4066724-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Analysis</subfield><subfield code="0">(DE-588)4001865-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebra</subfield><subfield code="0">(DE-588)4001156-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Algebra</subfield><subfield code="0">(DE-588)4001156-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Wörterbuch</subfield><subfield code="0">(DE-588)4066724-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Analysis</subfield><subfield code="0">(DE-588)4001865-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Wörterbuch</subfield><subfield code="0">(DE-588)4066724-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-08434-5</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-09695-9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511565748</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029354753</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511565748</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511565748</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043945782 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:24Z |
institution | BVB |
isbn | 9780511565748 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029354753 |
oclc_num | 992827092 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (ix, 238 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1972 |
publishDateSearch | 1972 |
publishDateSort | 1972 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Howson, A. G. 1931- Verfasser aut A handbook of terms used in algebra and analysis compiled by A.G. Howson A Handbook of Terms used in Algebra & Analysis Cambridge Cambridge University Press 1972 1 online resource (ix, 238 pages) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 05 Oct 2015) Some mathematical language -- Sets and functions -- Equivalence relations and quotient sets -- Number systems I -- Groups I -- Rings and fields -- Homomorphisms and quotient algebras -- Vector spaces and matrices -- Linear equations and rank -- Determinants and multilinear mappings -- Polynomials -- Groups II -- Number systems II -- Fields and polynomials -- Lattices and Boolean algebra -- Ordinal numbers -- Eigenvectors and eigenvalues -- Quadratic forms and inner products -- Categories and functors -- Metric spaces and continuity -- Topological spaces and continuity -- Metric spaces II -- The real numbers -- Real-valued functions of a real variable -- Differentiable functions of one variable -- Functions of several real variables -- Integration -- Infinite series and products -- Improper integrals -- Curves and arc length -- Functions of a complex variable -- Multiple integrals -- Logarithmic, exponential and trigonometric functions -- Vector algebra -- Vector calculus -- Line and surface integrals -- Measure and Lebesque integration -- Fourier series -- Appendix 1. Some 'named' theorems and properties -- Appendix 2. Alphabets used in mathematics Degree students of mathematics are often daunted by the mass of definitions and theorems with which they must familiarize themselves. In the fields algebra and analysis this burden will now be reduced because in A Handbook of Terms they will find sufficient explanations of the terms and the symbolism that they are likely to come across in their university courses. Rather than being like an alphabetical dictionary, the order and division of the sections correspond to the way in which mathematics can be developed. This arrangement, together with the numerous notes and examples that are interspersed with the text, will give students some feeling for the underlying mathematics. Many of the terms are explained in several sections of the book, and alternative definitions are given. Theorems, too, are frequently stated at alternative levels of generality. Where possible, attention is drawn to those occasions where various authors ascribe different meanings to the same term. The handbook will be extremely useful to students for revision purposes. It is also an excellent source of reference for professional mathematicians, lecturers and teachers Algebra / Terminology Mathematical analysis / Terminology Wörterbuch (DE-588)4066724-8 gnd rswk-swf Analysis (DE-588)4001865-9 gnd rswk-swf Algebra (DE-588)4001156-2 gnd rswk-swf Algebra (DE-588)4001156-2 s Wörterbuch (DE-588)4066724-8 s 1\p DE-604 Analysis (DE-588)4001865-9 s 2\p DE-604 Erscheint auch als Druckausgabe 978-0-521-08434-5 Erscheint auch als Druckausgabe 978-0-521-09695-9 https://doi.org/10.1017/CBO9780511565748 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Howson, A. G. 1931- A handbook of terms used in algebra and analysis Some mathematical language -- Sets and functions -- Equivalence relations and quotient sets -- Number systems I -- Groups I -- Rings and fields -- Homomorphisms and quotient algebras -- Vector spaces and matrices -- Linear equations and rank -- Determinants and multilinear mappings -- Polynomials -- Groups II -- Number systems II -- Fields and polynomials -- Lattices and Boolean algebra -- Ordinal numbers -- Eigenvectors and eigenvalues -- Quadratic forms and inner products -- Categories and functors -- Metric spaces and continuity -- Topological spaces and continuity -- Metric spaces II -- The real numbers -- Real-valued functions of a real variable -- Differentiable functions of one variable -- Functions of several real variables -- Integration -- Infinite series and products -- Improper integrals -- Curves and arc length -- Functions of a complex variable -- Multiple integrals -- Logarithmic, exponential and trigonometric functions -- Vector algebra -- Vector calculus -- Line and surface integrals -- Measure and Lebesque integration -- Fourier series -- Appendix 1. Some 'named' theorems and properties -- Appendix 2. Alphabets used in mathematics Algebra / Terminology Mathematical analysis / Terminology Wörterbuch (DE-588)4066724-8 gnd Analysis (DE-588)4001865-9 gnd Algebra (DE-588)4001156-2 gnd |
subject_GND | (DE-588)4066724-8 (DE-588)4001865-9 (DE-588)4001156-2 |
title | A handbook of terms used in algebra and analysis |
title_alt | A Handbook of Terms used in Algebra & Analysis |
title_auth | A handbook of terms used in algebra and analysis |
title_exact_search | A handbook of terms used in algebra and analysis |
title_full | A handbook of terms used in algebra and analysis compiled by A.G. Howson |
title_fullStr | A handbook of terms used in algebra and analysis compiled by A.G. Howson |
title_full_unstemmed | A handbook of terms used in algebra and analysis compiled by A.G. Howson |
title_short | A handbook of terms used in algebra and analysis |
title_sort | a handbook of terms used in algebra and analysis |
topic | Algebra / Terminology Mathematical analysis / Terminology Wörterbuch (DE-588)4066724-8 gnd Analysis (DE-588)4001865-9 gnd Algebra (DE-588)4001156-2 gnd |
topic_facet | Algebra / Terminology Mathematical analysis / Terminology Wörterbuch Analysis Algebra |
url | https://doi.org/10.1017/CBO9780511565748 |
work_keys_str_mv | AT howsonag ahandbookoftermsusedinalgebraandanalysis AT howsonag ahandbookoftermsusedinalgebraanalysis |