Nonlinear diffusive waves:
This monograph deals with Burgers' equation and its generalisations. Such equations describe a wide variety of nonlinear diffusive phenomena, for instance, in nonlinear acoustics, laser physics, plasmas and atmospheric physics. The Burgers equation also has mathematical interest as a canonical...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1987
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | This monograph deals with Burgers' equation and its generalisations. Such equations describe a wide variety of nonlinear diffusive phenomena, for instance, in nonlinear acoustics, laser physics, plasmas and atmospheric physics. The Burgers equation also has mathematical interest as a canonical nonlinear parabolic differential equation that can be exactly linearised. It is closely related to equations that display soliton behaviour and its study has helped elucidate other such nonlinear behaviour. The approach adopted here is applied mathematical. The author discusses fully the mathematical properties of standard nonlinear diffusion equations, and contrasts them with those of Burgers' equation. Of particular mathematical interest is the treatment of self-similar solutions as intermediate asymptotics for a large class of initial value problems whose solutions evolve into self-similar forms. This is achieved both analytically and numerically |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (vii, 246 pages) |
ISBN: | 9780511569449 |
DOI: | 10.1017/CBO9780511569449 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043945750 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1987 |||| o||u| ||||||eng d | ||
020 | |a 9780511569449 |c Online |9 978-0-511-56944-9 | ||
024 | 7 | |a 10.1017/CBO9780511569449 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511569449 | ||
035 | |a (OCoLC)992908331 | ||
035 | |a (DE-599)BVBBV043945750 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 531/.1133 |2 19eng | |
084 | |a SK 560 |0 (DE-625)143246: |2 rvk | ||
084 | |a UF 5000 |0 (DE-625)145595: |2 rvk | ||
100 | 1 | |a Sachdev, P. L. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Nonlinear diffusive waves |c P.L. Sachdev |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1987 | |
300 | |a 1 online resource (vii, 246 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a This monograph deals with Burgers' equation and its generalisations. Such equations describe a wide variety of nonlinear diffusive phenomena, for instance, in nonlinear acoustics, laser physics, plasmas and atmospheric physics. The Burgers equation also has mathematical interest as a canonical nonlinear parabolic differential equation that can be exactly linearised. It is closely related to equations that display soliton behaviour and its study has helped elucidate other such nonlinear behaviour. The approach adopted here is applied mathematical. The author discusses fully the mathematical properties of standard nonlinear diffusion equations, and contrasts them with those of Burgers' equation. Of particular mathematical interest is the treatment of self-similar solutions as intermediate asymptotics for a large class of initial value problems whose solutions evolve into self-similar forms. This is achieved both analytically and numerically | ||
650 | 4 | |a Nonlinear waves | |
650 | 0 | 7 | |a Nichtlineare Diffusionsgleichung |0 (DE-588)4171749-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Burgers-Hopf-Gleichung |0 (DE-588)4147012-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineare Welle |0 (DE-588)4042102-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nichtlineare Welle |0 (DE-588)4042102-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Burgers-Hopf-Gleichung |0 (DE-588)4147012-6 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Nichtlineare Diffusionsgleichung |0 (DE-588)4171749-1 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-09303-3 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-26593-5 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511569449 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029354721 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511569449 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511569449 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176892305080320 |
---|---|
any_adam_object | |
author | Sachdev, P. L. |
author_facet | Sachdev, P. L. |
author_role | aut |
author_sort | Sachdev, P. L. |
author_variant | p l s pl pls |
building | Verbundindex |
bvnumber | BV043945750 |
classification_rvk | SK 560 UF 5000 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511569449 (OCoLC)992908331 (DE-599)BVBBV043945750 |
dewey-full | 531/.1133 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 531 - Classical mechanics |
dewey-raw | 531/.1133 |
dewey-search | 531/.1133 |
dewey-sort | 3531 41133 |
dewey-tens | 530 - Physics |
discipline | Physik Mathematik |
doi_str_mv | 10.1017/CBO9780511569449 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03285nmm a2200565zc 4500</leader><controlfield tag="001">BV043945750</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1987 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511569449</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-56944-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511569449</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511569449</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)992908331</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043945750</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">531/.1133</subfield><subfield code="2">19eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 560</subfield><subfield code="0">(DE-625)143246:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 5000</subfield><subfield code="0">(DE-625)145595:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sachdev, P. L.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonlinear diffusive waves</subfield><subfield code="c">P.L. Sachdev</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1987</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (vii, 246 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This monograph deals with Burgers' equation and its generalisations. Such equations describe a wide variety of nonlinear diffusive phenomena, for instance, in nonlinear acoustics, laser physics, plasmas and atmospheric physics. The Burgers equation also has mathematical interest as a canonical nonlinear parabolic differential equation that can be exactly linearised. It is closely related to equations that display soliton behaviour and its study has helped elucidate other such nonlinear behaviour. The approach adopted here is applied mathematical. The author discusses fully the mathematical properties of standard nonlinear diffusion equations, and contrasts them with those of Burgers' equation. Of particular mathematical interest is the treatment of self-similar solutions as intermediate asymptotics for a large class of initial value problems whose solutions evolve into self-similar forms. This is achieved both analytically and numerically</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear waves</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Diffusionsgleichung</subfield><subfield code="0">(DE-588)4171749-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Burgers-Hopf-Gleichung</subfield><subfield code="0">(DE-588)4147012-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Welle</subfield><subfield code="0">(DE-588)4042102-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtlineare Welle</subfield><subfield code="0">(DE-588)4042102-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Burgers-Hopf-Gleichung</subfield><subfield code="0">(DE-588)4147012-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Nichtlineare Diffusionsgleichung</subfield><subfield code="0">(DE-588)4171749-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-09303-3</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-26593-5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511569449</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029354721</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511569449</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511569449</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043945750 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:24Z |
institution | BVB |
isbn | 9780511569449 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029354721 |
oclc_num | 992908331 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (vii, 246 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1987 |
publishDateSearch | 1987 |
publishDateSort | 1987 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Sachdev, P. L. Verfasser aut Nonlinear diffusive waves P.L. Sachdev Cambridge Cambridge University Press 1987 1 online resource (vii, 246 pages) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 05 Oct 2015) This monograph deals with Burgers' equation and its generalisations. Such equations describe a wide variety of nonlinear diffusive phenomena, for instance, in nonlinear acoustics, laser physics, plasmas and atmospheric physics. The Burgers equation also has mathematical interest as a canonical nonlinear parabolic differential equation that can be exactly linearised. It is closely related to equations that display soliton behaviour and its study has helped elucidate other such nonlinear behaviour. The approach adopted here is applied mathematical. The author discusses fully the mathematical properties of standard nonlinear diffusion equations, and contrasts them with those of Burgers' equation. Of particular mathematical interest is the treatment of self-similar solutions as intermediate asymptotics for a large class of initial value problems whose solutions evolve into self-similar forms. This is achieved both analytically and numerically Nonlinear waves Nichtlineare Diffusionsgleichung (DE-588)4171749-1 gnd rswk-swf Burgers-Hopf-Gleichung (DE-588)4147012-6 gnd rswk-swf Nichtlineare Welle (DE-588)4042102-8 gnd rswk-swf Nichtlineare Welle (DE-588)4042102-8 s 1\p DE-604 Burgers-Hopf-Gleichung (DE-588)4147012-6 s 2\p DE-604 Nichtlineare Diffusionsgleichung (DE-588)4171749-1 s 3\p DE-604 Erscheint auch als Druckausgabe 978-0-521-09303-3 Erscheint auch als Druckausgabe 978-0-521-26593-5 https://doi.org/10.1017/CBO9780511569449 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Sachdev, P. L. Nonlinear diffusive waves Nonlinear waves Nichtlineare Diffusionsgleichung (DE-588)4171749-1 gnd Burgers-Hopf-Gleichung (DE-588)4147012-6 gnd Nichtlineare Welle (DE-588)4042102-8 gnd |
subject_GND | (DE-588)4171749-1 (DE-588)4147012-6 (DE-588)4042102-8 |
title | Nonlinear diffusive waves |
title_auth | Nonlinear diffusive waves |
title_exact_search | Nonlinear diffusive waves |
title_full | Nonlinear diffusive waves P.L. Sachdev |
title_fullStr | Nonlinear diffusive waves P.L. Sachdev |
title_full_unstemmed | Nonlinear diffusive waves P.L. Sachdev |
title_short | Nonlinear diffusive waves |
title_sort | nonlinear diffusive waves |
topic | Nonlinear waves Nichtlineare Diffusionsgleichung (DE-588)4171749-1 gnd Burgers-Hopf-Gleichung (DE-588)4147012-6 gnd Nichtlineare Welle (DE-588)4042102-8 gnd |
topic_facet | Nonlinear waves Nichtlineare Diffusionsgleichung Burgers-Hopf-Gleichung Nichtlineare Welle |
url | https://doi.org/10.1017/CBO9780511569449 |
work_keys_str_mv | AT sachdevpl nonlineardiffusivewaves |