Normal forms and bifurcation of planar vector fields:
This book is concerned with the bifurcation theory, the study of the changes in the structures of the solution of ordinary differential equations as parameters of the model vary. The theory has developed rapidly over the past two decades. Chapters 1 and 2 of the book introduce two systematic methods...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1994
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | This book is concerned with the bifurcation theory, the study of the changes in the structures of the solution of ordinary differential equations as parameters of the model vary. The theory has developed rapidly over the past two decades. Chapters 1 and 2 of the book introduce two systematic methods of simplifying equations: centre manifold theory and normal form theory, by which the dimension of equations may be reduced and the forms changed so that they are as simple as possible. Chapters 3–5 of the book study in considerable detail the bifurcation of those one- or two-dimensional equations with one, two or several parameters. This book is aimed at mathematicians and graduate students interested in dynamical systems, ordinary differential equations and/or bifurcation theory. The basic knowledge required by this book is advanced calculus, functional analysis and qualitative theory of ordinary differential equations |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (viii, 472 pages) |
ISBN: | 9780511665639 |
DOI: | 10.1017/CBO9780511665639 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043945696 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1994 |||| o||u| ||||||eng d | ||
020 | |a 9780511665639 |c Online |9 978-0-511-66563-9 | ||
024 | 7 | |a 10.1017/CBO9780511665639 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511665639 | ||
035 | |a (OCoLC)849910621 | ||
035 | |a (DE-599)BVBBV043945696 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 515/.35 |2 20 | |
084 | |a SK 350 |0 (DE-625)143233: |2 rvk | ||
084 | |a SK 520 |0 (DE-625)143244: |2 rvk | ||
100 | 1 | |a Chow, Shui-Nee |e Verfasser |4 aut | |
245 | 1 | 0 | |a Normal forms and bifurcation of planar vector fields |c Shui-Nee Chow, Chengzhi Li, Duo Wang |
246 | 1 | 3 | |a Normal Forms & Bifurcation of Planar Vector Fields |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1994 | |
300 | |a 1 online resource (viii, 472 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a Ch. 1. Center Manifolds -- Ch. 2. Normal Forms -- Ch. 3. Codimension One Bifurcations -- Ch. 4. Codimension Two Bifurcations -- Ch. 5. Bifurcations with Codimension Higher than Two | |
520 | |a This book is concerned with the bifurcation theory, the study of the changes in the structures of the solution of ordinary differential equations as parameters of the model vary. The theory has developed rapidly over the past two decades. Chapters 1 and 2 of the book introduce two systematic methods of simplifying equations: centre manifold theory and normal form theory, by which the dimension of equations may be reduced and the forms changed so that they are as simple as possible. Chapters 3–5 of the book study in considerable detail the bifurcation of those one- or two-dimensional equations with one, two or several parameters. This book is aimed at mathematicians and graduate students interested in dynamical systems, ordinary differential equations and/or bifurcation theory. The basic knowledge required by this book is advanced calculus, functional analysis and qualitative theory of ordinary differential equations | ||
650 | 4 | |a Bifurcation theory | |
650 | 4 | |a Vector fields | |
650 | 4 | |a Normal forms (Mathematics) | |
650 | 0 | 7 | |a Planares Vektorfeld |0 (DE-588)4261750-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Normalform |0 (DE-588)4172025-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Verzweigung |g Mathematik |0 (DE-588)4078889-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Planares Vektorfeld |0 (DE-588)4261750-9 |D s |
689 | 0 | 1 | |a Verzweigung |g Mathematik |0 (DE-588)4078889-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Planares Vektorfeld |0 (DE-588)4261750-9 |D s |
689 | 1 | 1 | |a Normalform |0 (DE-588)4172025-8 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Li, Chengzhi |e Sonstige |4 oth | |
700 | 1 | |a Wang, Duo |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-10223-0 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-37226-8 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511665639 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029354667 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511665639 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511665639 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176892205465600 |
---|---|
any_adam_object | |
author | Chow, Shui-Nee |
author_facet | Chow, Shui-Nee |
author_role | aut |
author_sort | Chow, Shui-Nee |
author_variant | s n c snc |
building | Verbundindex |
bvnumber | BV043945696 |
classification_rvk | SK 350 SK 520 |
collection | ZDB-20-CBO |
contents | Ch. 1. Center Manifolds -- Ch. 2. Normal Forms -- Ch. 3. Codimension One Bifurcations -- Ch. 4. Codimension Two Bifurcations -- Ch. 5. Bifurcations with Codimension Higher than Two |
ctrlnum | (ZDB-20-CBO)CR9780511665639 (OCoLC)849910621 (DE-599)BVBBV043945696 |
dewey-full | 515/.35 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.35 |
dewey-search | 515/.35 |
dewey-sort | 3515 235 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511665639 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03639nmm a2200625zc 4500</leader><controlfield tag="001">BV043945696</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1994 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511665639</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-66563-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511665639</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511665639</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)849910621</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043945696</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.35</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 350</subfield><subfield code="0">(DE-625)143233:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 520</subfield><subfield code="0">(DE-625)143244:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chow, Shui-Nee</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Normal forms and bifurcation of planar vector fields</subfield><subfield code="c">Shui-Nee Chow, Chengzhi Li, Duo Wang</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Normal Forms & Bifurcation of Planar Vector Fields</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (viii, 472 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Ch. 1. Center Manifolds -- Ch. 2. Normal Forms -- Ch. 3. Codimension One Bifurcations -- Ch. 4. Codimension Two Bifurcations -- Ch. 5. Bifurcations with Codimension Higher than Two</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book is concerned with the bifurcation theory, the study of the changes in the structures of the solution of ordinary differential equations as parameters of the model vary. The theory has developed rapidly over the past two decades. Chapters 1 and 2 of the book introduce two systematic methods of simplifying equations: centre manifold theory and normal form theory, by which the dimension of equations may be reduced and the forms changed so that they are as simple as possible. Chapters 3–5 of the book study in considerable detail the bifurcation of those one- or two-dimensional equations with one, two or several parameters. This book is aimed at mathematicians and graduate students interested in dynamical systems, ordinary differential equations and/or bifurcation theory. The basic knowledge required by this book is advanced calculus, functional analysis and qualitative theory of ordinary differential equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bifurcation theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vector fields</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Normal forms (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Planares Vektorfeld</subfield><subfield code="0">(DE-588)4261750-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Normalform</subfield><subfield code="0">(DE-588)4172025-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Verzweigung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4078889-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Planares Vektorfeld</subfield><subfield code="0">(DE-588)4261750-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Verzweigung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4078889-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Planares Vektorfeld</subfield><subfield code="0">(DE-588)4261750-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Normalform</subfield><subfield code="0">(DE-588)4172025-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Chengzhi</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Duo</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-10223-0</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-37226-8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511665639</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029354667</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511665639</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511665639</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043945696 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:24Z |
institution | BVB |
isbn | 9780511665639 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029354667 |
oclc_num | 849910621 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (viii, 472 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Chow, Shui-Nee Verfasser aut Normal forms and bifurcation of planar vector fields Shui-Nee Chow, Chengzhi Li, Duo Wang Normal Forms & Bifurcation of Planar Vector Fields Cambridge Cambridge University Press 1994 1 online resource (viii, 472 pages) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 05 Oct 2015) Ch. 1. Center Manifolds -- Ch. 2. Normal Forms -- Ch. 3. Codimension One Bifurcations -- Ch. 4. Codimension Two Bifurcations -- Ch. 5. Bifurcations with Codimension Higher than Two This book is concerned with the bifurcation theory, the study of the changes in the structures of the solution of ordinary differential equations as parameters of the model vary. The theory has developed rapidly over the past two decades. Chapters 1 and 2 of the book introduce two systematic methods of simplifying equations: centre manifold theory and normal form theory, by which the dimension of equations may be reduced and the forms changed so that they are as simple as possible. Chapters 3–5 of the book study in considerable detail the bifurcation of those one- or two-dimensional equations with one, two or several parameters. This book is aimed at mathematicians and graduate students interested in dynamical systems, ordinary differential equations and/or bifurcation theory. The basic knowledge required by this book is advanced calculus, functional analysis and qualitative theory of ordinary differential equations Bifurcation theory Vector fields Normal forms (Mathematics) Planares Vektorfeld (DE-588)4261750-9 gnd rswk-swf Normalform (DE-588)4172025-8 gnd rswk-swf Verzweigung Mathematik (DE-588)4078889-1 gnd rswk-swf Planares Vektorfeld (DE-588)4261750-9 s Verzweigung Mathematik (DE-588)4078889-1 s 1\p DE-604 Normalform (DE-588)4172025-8 s 2\p DE-604 Li, Chengzhi Sonstige oth Wang, Duo Sonstige oth Erscheint auch als Druckausgabe 978-0-521-10223-0 Erscheint auch als Druckausgabe 978-0-521-37226-8 https://doi.org/10.1017/CBO9780511665639 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Chow, Shui-Nee Normal forms and bifurcation of planar vector fields Ch. 1. Center Manifolds -- Ch. 2. Normal Forms -- Ch. 3. Codimension One Bifurcations -- Ch. 4. Codimension Two Bifurcations -- Ch. 5. Bifurcations with Codimension Higher than Two Bifurcation theory Vector fields Normal forms (Mathematics) Planares Vektorfeld (DE-588)4261750-9 gnd Normalform (DE-588)4172025-8 gnd Verzweigung Mathematik (DE-588)4078889-1 gnd |
subject_GND | (DE-588)4261750-9 (DE-588)4172025-8 (DE-588)4078889-1 |
title | Normal forms and bifurcation of planar vector fields |
title_alt | Normal Forms & Bifurcation of Planar Vector Fields |
title_auth | Normal forms and bifurcation of planar vector fields |
title_exact_search | Normal forms and bifurcation of planar vector fields |
title_full | Normal forms and bifurcation of planar vector fields Shui-Nee Chow, Chengzhi Li, Duo Wang |
title_fullStr | Normal forms and bifurcation of planar vector fields Shui-Nee Chow, Chengzhi Li, Duo Wang |
title_full_unstemmed | Normal forms and bifurcation of planar vector fields Shui-Nee Chow, Chengzhi Li, Duo Wang |
title_short | Normal forms and bifurcation of planar vector fields |
title_sort | normal forms and bifurcation of planar vector fields |
topic | Bifurcation theory Vector fields Normal forms (Mathematics) Planares Vektorfeld (DE-588)4261750-9 gnd Normalform (DE-588)4172025-8 gnd Verzweigung Mathematik (DE-588)4078889-1 gnd |
topic_facet | Bifurcation theory Vector fields Normal forms (Mathematics) Planares Vektorfeld Normalform Verzweigung Mathematik |
url | https://doi.org/10.1017/CBO9780511665639 |
work_keys_str_mv | AT chowshuinee normalformsandbifurcationofplanarvectorfields AT lichengzhi normalformsandbifurcationofplanarvectorfields AT wangduo normalformsandbifurcationofplanarvectorfields AT chowshuinee normalformsbifurcationofplanarvectorfields AT lichengzhi normalformsbifurcationofplanarvectorfields AT wangduo normalformsbifurcationofplanarvectorfields |