Mechanical efficiency of heat engines:
This 2007 book presents a developed general conceptual and basic quantitative analysis as well as the theory of mechanical efficiency of heat engines that a level of ideality and generality compatible with the treatment given to thermal efficiency in classical thermodynamics. This yields broad beari...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2007
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | This 2007 book presents a developed general conceptual and basic quantitative analysis as well as the theory of mechanical efficiency of heat engines that a level of ideality and generality compatible with the treatment given to thermal efficiency in classical thermodynamics. This yields broad bearing results concerning the overall cyclic conversion of heat into usable mechanical energy. The work reveals intrinsic limits on the overall performance of reciprocating heat engines. The theory describes the general effects of parameters such as compression ratio and external or buffer pressure on engine output. It also provides rational explanations of certain operational characteristics such as how engines generally behave when supercharged or pressurized. The results also identify optimum geometric configurations for engines operating in various regimes from isothermal to adiabatic and are extended to cover multi-workspace engines and heat pumps. Limited heat transfer due to finite-time effects have also been incorporated into the work |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xiii, 173 pages) |
ISBN: | 9780511546105 |
DOI: | 10.1017/CBO9780511546105 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043945671 | ||
003 | DE-604 | ||
005 | 20190829 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2007 |||| o||u| ||||||eng d | ||
020 | |a 9780511546105 |c Online |9 978-0-511-54610-5 | ||
024 | 7 | |a 10.1017/CBO9780511546105 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511546105 | ||
035 | |a (OCoLC)850800058 | ||
035 | |a (DE-599)BVBBV043945671 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 621.402/5 |2 22 | |
084 | |a UG 1200 |0 (DE-625)145614: |2 rvk | ||
084 | |a ZL 5600 |0 (DE-625)159596: |2 rvk | ||
100 | 1 | |a Senft, James R. |d 1942- |e Verfasser |0 (DE-588)174101570 |4 aut | |
245 | 1 | 0 | |a Mechanical efficiency of heat engines |c James R. Senft |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2007 | |
300 | |a 1 online resource (xiii, 173 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a Energy Transfers in Cyclic Heat Engines -- Heat Engine Diagrams -- The Basic Cyclic Heat Engine -- Buffer Pressure -- Shaft Work -- Buffer Pressure and Energy Transfers -- Mechanism Effectiveness and Mechanical Efficiency -- Mechanism Effectiveness -- Mechanical Efficiency -- Forced Work -- General Efficiency Limits -- The Fundamental Efficiency Theorem -- Stirling Comparison Theorem -- Constant Mechanism Effectiveness -- Optimum Buffer Pressure -- Optimally Buffered Stirling Engines -- The Mechanical Efficiency Limit -- The Brake Thermal Efficiency Limit -- Average Cycle and Optimum Buffer Pressure -- Compression Ratio and Shaft Work -- Limits on Compression Ratio -- Shaft Work Limits -- Temperature Effects -- Proof of the Maximum Shaft Work Theorem -- Pressurization Effects -- System Charging Monomorphic Engines -- Engines Charged Above Buffer Pressure -- Workspace Charging Theorem -- Charge Effects in Ideal Stirling Engines -- Workspace Charging Ideal Stirling Engines -- | |
505 | 8 | |a Efficacious Cycles -- Non-Efficacious Cycles -- Practical Implications -- Crossley-Stirling Engines -- Crossley Cycles -- Crossley Cycle Analysis -- Forced Work of the Crossley Cycle -- The Swept Volume Ratio Problem -- Conclusions -- Generalized Engine Cycles and Variable -- Buffer Pressure -- Parametric Representation -- Average Cycle Pressures -- Variable Buffer Pressure -- Buffer Pressure and Energy Transfers -- Mechanical Efficiency -- Pressurization Effects -- Multi-workspace Engines and Heat Pumps -- Multi-cylinder Engines -- Split-workspace Engines -- Engines with Double-acting Pistons -- Double-acting Split-workspace Engines -- Heat Pumps -- Optimum Stirling Engine Geometry -- The Gamma Engine -- The Schmidt Analysis -- The Schmidt Model for Gamma Engines -- Indicated Work -- Shaft Work -- Parameter Effects on Brake Output -- Optimum Swept Volume Ratio and Phase Angle -- Swept Volume Ratios -- Internal Temperatures -- Indicated Work Maxima -- Phase Angle -- | |
505 | 8 | |a Dead Space Effects -- Alternate Engine Configurations -- Conclusions -- Heat Transfer Effects -- Heat Exchange -- Heat Transfer Assumptions -- Maximum Indicated Power -- Maximum Brake Power -- Brake Thermal Efficiency at Maximum Power -- Heat Losses in Stirling Engines -- Maximum Indicated Power with Heat Leakage -- Operating Frequency and Temperature Ratio in Stirling -- Engines -- Maximum Brake Power of Stirling Engines with Heat Loss -- Universal Power Maxima -- Power Relative to Efficiency -- A General Theory of Machines, Effectiveness, and Efficiency -- Kinematic Machines -- State Parameter -- Actuator Forces -- Force Relation -- Internal Energy -- Force Processes -- Frictional Dissipation -- Graphical Representation -- Reversed Operation -- Mechanism Effectiveness -- Content of the Effectiveness Function -- Actuator Work -- Constant Internal Energy -- An Ultra Low Temperature Differential Stirling Engine -- Background -- Compression Ratio Limits -- Mean Volume Specific Work -- | |
505 | 8 | |a Engine Performance -- Derivation of Schmidt Gamma Equations -- Volume and Pressure Functions -- Indicated Work -- Forced Work | |
520 | |a This 2007 book presents a developed general conceptual and basic quantitative analysis as well as the theory of mechanical efficiency of heat engines that a level of ideality and generality compatible with the treatment given to thermal efficiency in classical thermodynamics. This yields broad bearing results concerning the overall cyclic conversion of heat into usable mechanical energy. The work reveals intrinsic limits on the overall performance of reciprocating heat engines. The theory describes the general effects of parameters such as compression ratio and external or buffer pressure on engine output. It also provides rational explanations of certain operational characteristics such as how engines generally behave when supercharged or pressurized. The results also identify optimum geometric configurations for engines operating in various regimes from isothermal to adiabatic and are extended to cover multi-workspace engines and heat pumps. Limited heat transfer due to finite-time effects have also been incorporated into the work | ||
650 | 4 | |a Heat-engines | |
650 | 4 | |a Mechanical efficiency | |
650 | 4 | |a Thermodynamics | |
650 | 0 | 7 | |a Wärmekraftmaschine |0 (DE-588)4124418-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Wärmekraftmaschine |0 (DE-588)4124418-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-16928-8 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-86880-8 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511546105 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029354642 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511546105 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511546105 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176892149891072 |
---|---|
any_adam_object | |
author | Senft, James R. 1942- |
author_GND | (DE-588)174101570 |
author_facet | Senft, James R. 1942- |
author_role | aut |
author_sort | Senft, James R. 1942- |
author_variant | j r s jr jrs |
building | Verbundindex |
bvnumber | BV043945671 |
classification_rvk | UG 1200 ZL 5600 |
collection | ZDB-20-CBO |
contents | Energy Transfers in Cyclic Heat Engines -- Heat Engine Diagrams -- The Basic Cyclic Heat Engine -- Buffer Pressure -- Shaft Work -- Buffer Pressure and Energy Transfers -- Mechanism Effectiveness and Mechanical Efficiency -- Mechanism Effectiveness -- Mechanical Efficiency -- Forced Work -- General Efficiency Limits -- The Fundamental Efficiency Theorem -- Stirling Comparison Theorem -- Constant Mechanism Effectiveness -- Optimum Buffer Pressure -- Optimally Buffered Stirling Engines -- The Mechanical Efficiency Limit -- The Brake Thermal Efficiency Limit -- Average Cycle and Optimum Buffer Pressure -- Compression Ratio and Shaft Work -- Limits on Compression Ratio -- Shaft Work Limits -- Temperature Effects -- Proof of the Maximum Shaft Work Theorem -- Pressurization Effects -- System Charging Monomorphic Engines -- Engines Charged Above Buffer Pressure -- Workspace Charging Theorem -- Charge Effects in Ideal Stirling Engines -- Workspace Charging Ideal Stirling Engines -- Efficacious Cycles -- Non-Efficacious Cycles -- Practical Implications -- Crossley-Stirling Engines -- Crossley Cycles -- Crossley Cycle Analysis -- Forced Work of the Crossley Cycle -- The Swept Volume Ratio Problem -- Conclusions -- Generalized Engine Cycles and Variable -- Buffer Pressure -- Parametric Representation -- Average Cycle Pressures -- Variable Buffer Pressure -- Buffer Pressure and Energy Transfers -- Mechanical Efficiency -- Pressurization Effects -- Multi-workspace Engines and Heat Pumps -- Multi-cylinder Engines -- Split-workspace Engines -- Engines with Double-acting Pistons -- Double-acting Split-workspace Engines -- Heat Pumps -- Optimum Stirling Engine Geometry -- The Gamma Engine -- The Schmidt Analysis -- The Schmidt Model for Gamma Engines -- Indicated Work -- Shaft Work -- Parameter Effects on Brake Output -- Optimum Swept Volume Ratio and Phase Angle -- Swept Volume Ratios -- Internal Temperatures -- Indicated Work Maxima -- Phase Angle -- Dead Space Effects -- Alternate Engine Configurations -- Conclusions -- Heat Transfer Effects -- Heat Exchange -- Heat Transfer Assumptions -- Maximum Indicated Power -- Maximum Brake Power -- Brake Thermal Efficiency at Maximum Power -- Heat Losses in Stirling Engines -- Maximum Indicated Power with Heat Leakage -- Operating Frequency and Temperature Ratio in Stirling -- Engines -- Maximum Brake Power of Stirling Engines with Heat Loss -- Universal Power Maxima -- Power Relative to Efficiency -- A General Theory of Machines, Effectiveness, and Efficiency -- Kinematic Machines -- State Parameter -- Actuator Forces -- Force Relation -- Internal Energy -- Force Processes -- Frictional Dissipation -- Graphical Representation -- Reversed Operation -- Mechanism Effectiveness -- Content of the Effectiveness Function -- Actuator Work -- Constant Internal Energy -- An Ultra Low Temperature Differential Stirling Engine -- Background -- Compression Ratio Limits -- Mean Volume Specific Work -- Engine Performance -- Derivation of Schmidt Gamma Equations -- Volume and Pressure Functions -- Indicated Work -- Forced Work |
ctrlnum | (ZDB-20-CBO)CR9780511546105 (OCoLC)850800058 (DE-599)BVBBV043945671 |
dewey-full | 621.402/5 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.402/5 |
dewey-search | 621.402/5 |
dewey-sort | 3621.402 15 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Maschinenbau / Maschinenwesen Physik Energietechnik |
doi_str_mv | 10.1017/CBO9780511546105 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06134nmm a2200541zc 4500</leader><controlfield tag="001">BV043945671</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190829 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2007 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511546105</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-54610-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511546105</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511546105</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)850800058</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043945671</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.402/5</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UG 1200</subfield><subfield code="0">(DE-625)145614:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZL 5600</subfield><subfield code="0">(DE-625)159596:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Senft, James R.</subfield><subfield code="d">1942-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)174101570</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mechanical efficiency of heat engines</subfield><subfield code="c">James R. Senft</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiii, 173 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Energy Transfers in Cyclic Heat Engines -- Heat Engine Diagrams -- The Basic Cyclic Heat Engine -- Buffer Pressure -- Shaft Work -- Buffer Pressure and Energy Transfers -- Mechanism Effectiveness and Mechanical Efficiency -- Mechanism Effectiveness -- Mechanical Efficiency -- Forced Work -- General Efficiency Limits -- The Fundamental Efficiency Theorem -- Stirling Comparison Theorem -- Constant Mechanism Effectiveness -- Optimum Buffer Pressure -- Optimally Buffered Stirling Engines -- The Mechanical Efficiency Limit -- The Brake Thermal Efficiency Limit -- Average Cycle and Optimum Buffer Pressure -- Compression Ratio and Shaft Work -- Limits on Compression Ratio -- Shaft Work Limits -- Temperature Effects -- Proof of the Maximum Shaft Work Theorem -- Pressurization Effects -- System Charging Monomorphic Engines -- Engines Charged Above Buffer Pressure -- Workspace Charging Theorem -- Charge Effects in Ideal Stirling Engines -- Workspace Charging Ideal Stirling Engines -- </subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Efficacious Cycles -- Non-Efficacious Cycles -- Practical Implications -- Crossley-Stirling Engines -- Crossley Cycles -- Crossley Cycle Analysis -- Forced Work of the Crossley Cycle -- The Swept Volume Ratio Problem -- Conclusions -- Generalized Engine Cycles and Variable -- Buffer Pressure -- Parametric Representation -- Average Cycle Pressures -- Variable Buffer Pressure -- Buffer Pressure and Energy Transfers -- Mechanical Efficiency -- Pressurization Effects -- Multi-workspace Engines and Heat Pumps -- Multi-cylinder Engines -- Split-workspace Engines -- Engines with Double-acting Pistons -- Double-acting Split-workspace Engines -- Heat Pumps -- Optimum Stirling Engine Geometry -- The Gamma Engine -- The Schmidt Analysis -- The Schmidt Model for Gamma Engines -- Indicated Work -- Shaft Work -- Parameter Effects on Brake Output -- Optimum Swept Volume Ratio and Phase Angle -- Swept Volume Ratios -- Internal Temperatures -- Indicated Work Maxima -- Phase Angle -- </subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Dead Space Effects -- Alternate Engine Configurations -- Conclusions -- Heat Transfer Effects -- Heat Exchange -- Heat Transfer Assumptions -- Maximum Indicated Power -- Maximum Brake Power -- Brake Thermal Efficiency at Maximum Power -- Heat Losses in Stirling Engines -- Maximum Indicated Power with Heat Leakage -- Operating Frequency and Temperature Ratio in Stirling -- Engines -- Maximum Brake Power of Stirling Engines with Heat Loss -- Universal Power Maxima -- Power Relative to Efficiency -- A General Theory of Machines, Effectiveness, and Efficiency -- Kinematic Machines -- State Parameter -- Actuator Forces -- Force Relation -- Internal Energy -- Force Processes -- Frictional Dissipation -- Graphical Representation -- Reversed Operation -- Mechanism Effectiveness -- Content of the Effectiveness Function -- Actuator Work -- Constant Internal Energy -- An Ultra Low Temperature Differential Stirling Engine -- Background -- Compression Ratio Limits -- Mean Volume Specific Work -- </subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Engine Performance -- Derivation of Schmidt Gamma Equations -- Volume and Pressure Functions -- Indicated Work -- Forced Work</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This 2007 book presents a developed general conceptual and basic quantitative analysis as well as the theory of mechanical efficiency of heat engines that a level of ideality and generality compatible with the treatment given to thermal efficiency in classical thermodynamics. This yields broad bearing results concerning the overall cyclic conversion of heat into usable mechanical energy. The work reveals intrinsic limits on the overall performance of reciprocating heat engines. The theory describes the general effects of parameters such as compression ratio and external or buffer pressure on engine output. It also provides rational explanations of certain operational characteristics such as how engines generally behave when supercharged or pressurized. The results also identify optimum geometric configurations for engines operating in various regimes from isothermal to adiabatic and are extended to cover multi-workspace engines and heat pumps. Limited heat transfer due to finite-time effects have also been incorporated into the work</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat-engines</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanical efficiency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermodynamics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wärmekraftmaschine</subfield><subfield code="0">(DE-588)4124418-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wärmekraftmaschine</subfield><subfield code="0">(DE-588)4124418-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-16928-8</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-86880-8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511546105</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029354642</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511546105</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511546105</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043945671 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:24Z |
institution | BVB |
isbn | 9780511546105 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029354642 |
oclc_num | 850800058 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xiii, 173 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Senft, James R. 1942- Verfasser (DE-588)174101570 aut Mechanical efficiency of heat engines James R. Senft Cambridge Cambridge University Press 2007 1 online resource (xiii, 173 pages) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 05 Oct 2015) Energy Transfers in Cyclic Heat Engines -- Heat Engine Diagrams -- The Basic Cyclic Heat Engine -- Buffer Pressure -- Shaft Work -- Buffer Pressure and Energy Transfers -- Mechanism Effectiveness and Mechanical Efficiency -- Mechanism Effectiveness -- Mechanical Efficiency -- Forced Work -- General Efficiency Limits -- The Fundamental Efficiency Theorem -- Stirling Comparison Theorem -- Constant Mechanism Effectiveness -- Optimum Buffer Pressure -- Optimally Buffered Stirling Engines -- The Mechanical Efficiency Limit -- The Brake Thermal Efficiency Limit -- Average Cycle and Optimum Buffer Pressure -- Compression Ratio and Shaft Work -- Limits on Compression Ratio -- Shaft Work Limits -- Temperature Effects -- Proof of the Maximum Shaft Work Theorem -- Pressurization Effects -- System Charging Monomorphic Engines -- Engines Charged Above Buffer Pressure -- Workspace Charging Theorem -- Charge Effects in Ideal Stirling Engines -- Workspace Charging Ideal Stirling Engines -- Efficacious Cycles -- Non-Efficacious Cycles -- Practical Implications -- Crossley-Stirling Engines -- Crossley Cycles -- Crossley Cycle Analysis -- Forced Work of the Crossley Cycle -- The Swept Volume Ratio Problem -- Conclusions -- Generalized Engine Cycles and Variable -- Buffer Pressure -- Parametric Representation -- Average Cycle Pressures -- Variable Buffer Pressure -- Buffer Pressure and Energy Transfers -- Mechanical Efficiency -- Pressurization Effects -- Multi-workspace Engines and Heat Pumps -- Multi-cylinder Engines -- Split-workspace Engines -- Engines with Double-acting Pistons -- Double-acting Split-workspace Engines -- Heat Pumps -- Optimum Stirling Engine Geometry -- The Gamma Engine -- The Schmidt Analysis -- The Schmidt Model for Gamma Engines -- Indicated Work -- Shaft Work -- Parameter Effects on Brake Output -- Optimum Swept Volume Ratio and Phase Angle -- Swept Volume Ratios -- Internal Temperatures -- Indicated Work Maxima -- Phase Angle -- Dead Space Effects -- Alternate Engine Configurations -- Conclusions -- Heat Transfer Effects -- Heat Exchange -- Heat Transfer Assumptions -- Maximum Indicated Power -- Maximum Brake Power -- Brake Thermal Efficiency at Maximum Power -- Heat Losses in Stirling Engines -- Maximum Indicated Power with Heat Leakage -- Operating Frequency and Temperature Ratio in Stirling -- Engines -- Maximum Brake Power of Stirling Engines with Heat Loss -- Universal Power Maxima -- Power Relative to Efficiency -- A General Theory of Machines, Effectiveness, and Efficiency -- Kinematic Machines -- State Parameter -- Actuator Forces -- Force Relation -- Internal Energy -- Force Processes -- Frictional Dissipation -- Graphical Representation -- Reversed Operation -- Mechanism Effectiveness -- Content of the Effectiveness Function -- Actuator Work -- Constant Internal Energy -- An Ultra Low Temperature Differential Stirling Engine -- Background -- Compression Ratio Limits -- Mean Volume Specific Work -- Engine Performance -- Derivation of Schmidt Gamma Equations -- Volume and Pressure Functions -- Indicated Work -- Forced Work This 2007 book presents a developed general conceptual and basic quantitative analysis as well as the theory of mechanical efficiency of heat engines that a level of ideality and generality compatible with the treatment given to thermal efficiency in classical thermodynamics. This yields broad bearing results concerning the overall cyclic conversion of heat into usable mechanical energy. The work reveals intrinsic limits on the overall performance of reciprocating heat engines. The theory describes the general effects of parameters such as compression ratio and external or buffer pressure on engine output. It also provides rational explanations of certain operational characteristics such as how engines generally behave when supercharged or pressurized. The results also identify optimum geometric configurations for engines operating in various regimes from isothermal to adiabatic and are extended to cover multi-workspace engines and heat pumps. Limited heat transfer due to finite-time effects have also been incorporated into the work Heat-engines Mechanical efficiency Thermodynamics Wärmekraftmaschine (DE-588)4124418-7 gnd rswk-swf Wärmekraftmaschine (DE-588)4124418-7 s 1\p DE-604 Erscheint auch als Druckausgabe 978-0-521-16928-8 Erscheint auch als Druckausgabe 978-0-521-86880-8 https://doi.org/10.1017/CBO9780511546105 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Senft, James R. 1942- Mechanical efficiency of heat engines Energy Transfers in Cyclic Heat Engines -- Heat Engine Diagrams -- The Basic Cyclic Heat Engine -- Buffer Pressure -- Shaft Work -- Buffer Pressure and Energy Transfers -- Mechanism Effectiveness and Mechanical Efficiency -- Mechanism Effectiveness -- Mechanical Efficiency -- Forced Work -- General Efficiency Limits -- The Fundamental Efficiency Theorem -- Stirling Comparison Theorem -- Constant Mechanism Effectiveness -- Optimum Buffer Pressure -- Optimally Buffered Stirling Engines -- The Mechanical Efficiency Limit -- The Brake Thermal Efficiency Limit -- Average Cycle and Optimum Buffer Pressure -- Compression Ratio and Shaft Work -- Limits on Compression Ratio -- Shaft Work Limits -- Temperature Effects -- Proof of the Maximum Shaft Work Theorem -- Pressurization Effects -- System Charging Monomorphic Engines -- Engines Charged Above Buffer Pressure -- Workspace Charging Theorem -- Charge Effects in Ideal Stirling Engines -- Workspace Charging Ideal Stirling Engines -- Efficacious Cycles -- Non-Efficacious Cycles -- Practical Implications -- Crossley-Stirling Engines -- Crossley Cycles -- Crossley Cycle Analysis -- Forced Work of the Crossley Cycle -- The Swept Volume Ratio Problem -- Conclusions -- Generalized Engine Cycles and Variable -- Buffer Pressure -- Parametric Representation -- Average Cycle Pressures -- Variable Buffer Pressure -- Buffer Pressure and Energy Transfers -- Mechanical Efficiency -- Pressurization Effects -- Multi-workspace Engines and Heat Pumps -- Multi-cylinder Engines -- Split-workspace Engines -- Engines with Double-acting Pistons -- Double-acting Split-workspace Engines -- Heat Pumps -- Optimum Stirling Engine Geometry -- The Gamma Engine -- The Schmidt Analysis -- The Schmidt Model for Gamma Engines -- Indicated Work -- Shaft Work -- Parameter Effects on Brake Output -- Optimum Swept Volume Ratio and Phase Angle -- Swept Volume Ratios -- Internal Temperatures -- Indicated Work Maxima -- Phase Angle -- Dead Space Effects -- Alternate Engine Configurations -- Conclusions -- Heat Transfer Effects -- Heat Exchange -- Heat Transfer Assumptions -- Maximum Indicated Power -- Maximum Brake Power -- Brake Thermal Efficiency at Maximum Power -- Heat Losses in Stirling Engines -- Maximum Indicated Power with Heat Leakage -- Operating Frequency and Temperature Ratio in Stirling -- Engines -- Maximum Brake Power of Stirling Engines with Heat Loss -- Universal Power Maxima -- Power Relative to Efficiency -- A General Theory of Machines, Effectiveness, and Efficiency -- Kinematic Machines -- State Parameter -- Actuator Forces -- Force Relation -- Internal Energy -- Force Processes -- Frictional Dissipation -- Graphical Representation -- Reversed Operation -- Mechanism Effectiveness -- Content of the Effectiveness Function -- Actuator Work -- Constant Internal Energy -- An Ultra Low Temperature Differential Stirling Engine -- Background -- Compression Ratio Limits -- Mean Volume Specific Work -- Engine Performance -- Derivation of Schmidt Gamma Equations -- Volume and Pressure Functions -- Indicated Work -- Forced Work Heat-engines Mechanical efficiency Thermodynamics Wärmekraftmaschine (DE-588)4124418-7 gnd |
subject_GND | (DE-588)4124418-7 |
title | Mechanical efficiency of heat engines |
title_auth | Mechanical efficiency of heat engines |
title_exact_search | Mechanical efficiency of heat engines |
title_full | Mechanical efficiency of heat engines James R. Senft |
title_fullStr | Mechanical efficiency of heat engines James R. Senft |
title_full_unstemmed | Mechanical efficiency of heat engines James R. Senft |
title_short | Mechanical efficiency of heat engines |
title_sort | mechanical efficiency of heat engines |
topic | Heat-engines Mechanical efficiency Thermodynamics Wärmekraftmaschine (DE-588)4124418-7 gnd |
topic_facet | Heat-engines Mechanical efficiency Thermodynamics Wärmekraftmaschine |
url | https://doi.org/10.1017/CBO9780511546105 |
work_keys_str_mv | AT senftjamesr mechanicalefficiencyofheatengines |