The geometrical language of continuum mechanics:
Epstein presents the fundamental concepts of modern differential geometry within the framework of continuum mechanics. Divided into three parts of roughly equal length, the book opens with a motivational chapter to impress upon the reader that differential geometry is indeed the natural language of...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2010
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 URL des Erstveröffentlichers |
Zusammenfassung: | Epstein presents the fundamental concepts of modern differential geometry within the framework of continuum mechanics. Divided into three parts of roughly equal length, the book opens with a motivational chapter to impress upon the reader that differential geometry is indeed the natural language of continuum mechanics or, better still, that the latter is a prime example of the application and materialisation of the former. In the second part, the fundamental notions of differential geometry are presented with rigor using a writing style that is as informal as possible. Differentiable manifolds, tangent bundles, exterior derivatives, Lie derivatives, and Lie groups are illustrated in terms of their mechanical interpretations. The third part includes the theory of fiber bundles, G-structures, and groupoids, which are applicable to bodies with internal structure and to the description of material inhomogeneity. The abstract notions of differential geometry are thus illuminated by practical and intuitively meaningful engineering applications |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xii, 312 pages) |
ISBN: | 9780511762673 |
DOI: | 10.1017/CBO9780511762673 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043945643 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2010 |||| o||u| ||||||eng d | ||
020 | |a 9780511762673 |c Online |9 978-0-511-76267-3 | ||
024 | 7 | |a 10.1017/CBO9780511762673 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511762673 | ||
035 | |a (OCoLC)967604591 | ||
035 | |a (DE-599)BVBBV043945643 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 531 |2 22 | |
084 | |a SK 370 |0 (DE-625)143234: |2 rvk | ||
084 | |a UF 2000 |0 (DE-625)145568: |2 rvk | ||
100 | 1 | |a Epstein, M. |e Verfasser |4 aut | |
245 | 1 | 0 | |a The geometrical language of continuum mechanics |c Marcelo Epstein |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2010 | |
300 | |a 1 online resource (xii, 312 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a Part I. Motivation and Background. The case for differential geometry -- Vector and affine spaces -- Tensor algebras and multivectors -- Part II. Differential Geometry. Differentiable manifolds -- Lie derivatives, Lie groups, Lie algebras -- Integration and fluxes -- Part III. Further Topics. Fibre bundles -- Inhomogeneity theory -- Connection, curvature, torsion -- Appendix A. A primer in continuum mechanics | |
520 | |a Epstein presents the fundamental concepts of modern differential geometry within the framework of continuum mechanics. Divided into three parts of roughly equal length, the book opens with a motivational chapter to impress upon the reader that differential geometry is indeed the natural language of continuum mechanics or, better still, that the latter is a prime example of the application and materialisation of the former. In the second part, the fundamental notions of differential geometry are presented with rigor using a writing style that is as informal as possible. Differentiable manifolds, tangent bundles, exterior derivatives, Lie derivatives, and Lie groups are illustrated in terms of their mechanical interpretations. The third part includes the theory of fiber bundles, G-structures, and groupoids, which are applicable to bodies with internal structure and to the description of material inhomogeneity. The abstract notions of differential geometry are thus illuminated by practical and intuitively meaningful engineering applications | ||
650 | 4 | |a Continuum mechanics | |
650 | 0 | 7 | |a Differentialgeometrie |0 (DE-588)4012248-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kontinuumsmechanik |0 (DE-588)4032296-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kontinuumsmechanik |0 (DE-588)4032296-8 |D s |
689 | 0 | 1 | |a Differentialgeometrie |0 (DE-588)4012248-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-19855-4 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-1-107-61703-2 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511762673 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029354614 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511762673 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511762673 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176892078587904 |
---|---|
any_adam_object | |
author | Epstein, M. |
author_facet | Epstein, M. |
author_role | aut |
author_sort | Epstein, M. |
author_variant | m e me |
building | Verbundindex |
bvnumber | BV043945643 |
classification_rvk | SK 370 UF 2000 |
collection | ZDB-20-CBO |
contents | Part I. Motivation and Background. The case for differential geometry -- Vector and affine spaces -- Tensor algebras and multivectors -- Part II. Differential Geometry. Differentiable manifolds -- Lie derivatives, Lie groups, Lie algebras -- Integration and fluxes -- Part III. Further Topics. Fibre bundles -- Inhomogeneity theory -- Connection, curvature, torsion -- Appendix A. A primer in continuum mechanics |
ctrlnum | (ZDB-20-CBO)CR9780511762673 (OCoLC)967604591 (DE-599)BVBBV043945643 |
dewey-full | 531 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 531 - Classical mechanics |
dewey-raw | 531 |
dewey-search | 531 |
dewey-sort | 3531 |
dewey-tens | 530 - Physics |
discipline | Physik Mathematik |
doi_str_mv | 10.1017/CBO9780511762673 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03452nmm a2200505zc 4500</leader><controlfield tag="001">BV043945643</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2010 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511762673</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-76267-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511762673</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511762673</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967604591</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043945643</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">531</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 2000</subfield><subfield code="0">(DE-625)145568:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Epstein, M.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The geometrical language of continuum mechanics</subfield><subfield code="c">Marcelo Epstein</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xii, 312 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Part I. Motivation and Background. The case for differential geometry -- Vector and affine spaces -- Tensor algebras and multivectors -- Part II. Differential Geometry. Differentiable manifolds -- Lie derivatives, Lie groups, Lie algebras -- Integration and fluxes -- Part III. Further Topics. Fibre bundles -- Inhomogeneity theory -- Connection, curvature, torsion -- Appendix A. A primer in continuum mechanics</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Epstein presents the fundamental concepts of modern differential geometry within the framework of continuum mechanics. Divided into three parts of roughly equal length, the book opens with a motivational chapter to impress upon the reader that differential geometry is indeed the natural language of continuum mechanics or, better still, that the latter is a prime example of the application and materialisation of the former. In the second part, the fundamental notions of differential geometry are presented with rigor using a writing style that is as informal as possible. Differentiable manifolds, tangent bundles, exterior derivatives, Lie derivatives, and Lie groups are illustrated in terms of their mechanical interpretations. The third part includes the theory of fiber bundles, G-structures, and groupoids, which are applicable to bodies with internal structure and to the description of material inhomogeneity. The abstract notions of differential geometry are thus illuminated by practical and intuitively meaningful engineering applications</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Continuum mechanics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialgeometrie</subfield><subfield code="0">(DE-588)4012248-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kontinuumsmechanik</subfield><subfield code="0">(DE-588)4032296-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kontinuumsmechanik</subfield><subfield code="0">(DE-588)4032296-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Differentialgeometrie</subfield><subfield code="0">(DE-588)4012248-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-19855-4</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-1-107-61703-2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511762673</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029354614</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511762673</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511762673</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043945643 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:24Z |
institution | BVB |
isbn | 9780511762673 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029354614 |
oclc_num | 967604591 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xii, 312 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Epstein, M. Verfasser aut The geometrical language of continuum mechanics Marcelo Epstein Cambridge Cambridge University Press 2010 1 online resource (xii, 312 pages) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 05 Oct 2015) Part I. Motivation and Background. The case for differential geometry -- Vector and affine spaces -- Tensor algebras and multivectors -- Part II. Differential Geometry. Differentiable manifolds -- Lie derivatives, Lie groups, Lie algebras -- Integration and fluxes -- Part III. Further Topics. Fibre bundles -- Inhomogeneity theory -- Connection, curvature, torsion -- Appendix A. A primer in continuum mechanics Epstein presents the fundamental concepts of modern differential geometry within the framework of continuum mechanics. Divided into three parts of roughly equal length, the book opens with a motivational chapter to impress upon the reader that differential geometry is indeed the natural language of continuum mechanics or, better still, that the latter is a prime example of the application and materialisation of the former. In the second part, the fundamental notions of differential geometry are presented with rigor using a writing style that is as informal as possible. Differentiable manifolds, tangent bundles, exterior derivatives, Lie derivatives, and Lie groups are illustrated in terms of their mechanical interpretations. The third part includes the theory of fiber bundles, G-structures, and groupoids, which are applicable to bodies with internal structure and to the description of material inhomogeneity. The abstract notions of differential geometry are thus illuminated by practical and intuitively meaningful engineering applications Continuum mechanics Differentialgeometrie (DE-588)4012248-7 gnd rswk-swf Kontinuumsmechanik (DE-588)4032296-8 gnd rswk-swf Kontinuumsmechanik (DE-588)4032296-8 s Differentialgeometrie (DE-588)4012248-7 s 1\p DE-604 Erscheint auch als Druckausgabe 978-0-521-19855-4 Erscheint auch als Druckausgabe 978-1-107-61703-2 https://doi.org/10.1017/CBO9780511762673 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Epstein, M. The geometrical language of continuum mechanics Part I. Motivation and Background. The case for differential geometry -- Vector and affine spaces -- Tensor algebras and multivectors -- Part II. Differential Geometry. Differentiable manifolds -- Lie derivatives, Lie groups, Lie algebras -- Integration and fluxes -- Part III. Further Topics. Fibre bundles -- Inhomogeneity theory -- Connection, curvature, torsion -- Appendix A. A primer in continuum mechanics Continuum mechanics Differentialgeometrie (DE-588)4012248-7 gnd Kontinuumsmechanik (DE-588)4032296-8 gnd |
subject_GND | (DE-588)4012248-7 (DE-588)4032296-8 |
title | The geometrical language of continuum mechanics |
title_auth | The geometrical language of continuum mechanics |
title_exact_search | The geometrical language of continuum mechanics |
title_full | The geometrical language of continuum mechanics Marcelo Epstein |
title_fullStr | The geometrical language of continuum mechanics Marcelo Epstein |
title_full_unstemmed | The geometrical language of continuum mechanics Marcelo Epstein |
title_short | The geometrical language of continuum mechanics |
title_sort | the geometrical language of continuum mechanics |
topic | Continuum mechanics Differentialgeometrie (DE-588)4012248-7 gnd Kontinuumsmechanik (DE-588)4032296-8 gnd |
topic_facet | Continuum mechanics Differentialgeometrie Kontinuumsmechanik |
url | https://doi.org/10.1017/CBO9780511762673 |
work_keys_str_mv | AT epsteinm thegeometricallanguageofcontinuummechanics |