Viscoelastic waves in layered media:
This book is a rigorous, self-contained exposition of the mathematical theory for wave propagation in layered media with arbitrary amounts of intrinsic absorption. The theory, previously unpublished in book form, provides solutions for fundamental wave-propagation problems and corresponding numerica...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2009
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | This book is a rigorous, self-contained exposition of the mathematical theory for wave propagation in layered media with arbitrary amounts of intrinsic absorption. The theory, previously unpublished in book form, provides solutions for fundamental wave-propagation problems and corresponding numerical results in the context of any media with a linear response (elastic or anelastic). It provides new insights regarding the physical characteristics for two- and three-dimensional anelastic body and surface waves. The book is an excellent graduate-level textbook. It permits fundamental elastic wave propagation to be taught in the broader context of wave propagation in any media with a linear response. The book is a valuable reference text. It provides tools for solving problems in seismology, geotechnical engineering, exploration geophysics, solid mechanics, and acoustics. The numerical examples and problem sets facilitate understanding by emphasizing important aspects of both the theory and the numerical results |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xv, 305 pages) |
ISBN: | 9780511580994 |
DOI: | 10.1017/CBO9780511580994 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043945621 | ||
003 | DE-604 | ||
005 | 20201118 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2009 |||| o||u| ||||||eng d | ||
020 | |a 9780511580994 |c Online |9 978-0-511-58099-4 | ||
024 | 7 | |a 10.1017/CBO9780511580994 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511580994 | ||
035 | |a (OCoLC)967605576 | ||
035 | |a (DE-599)BVBBV043945621 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 532/.0533 |2 22 | |
084 | |a UF 5100 |0 (DE-625)145596: |2 rvk | ||
100 | 1 | |a Borcherdt, Roger |d 1941- |e Verfasser |0 (DE-588)1221681982 |4 aut | |
245 | 1 | 0 | |a Viscoelastic waves in layered media |c Roger D. Borcherdt |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2009 | |
300 | |a 1 online resource (xv, 305 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a Preface; 1. One-dimensional viscoelasticity; 2. Three-dimensional viscoelasticity; 3. Viscoelastic P, SI and SII waves; 4. Framework for single-boundary reflection-refraction and surface-wave problems; 5. General P, SI, and SII waves incident on a viscoelastic boundary; 6. Numerical models for general waves reflected and refracted at viscoelastic boundaries; 7. General SI, P, and SII waves incident on a viscoelastic free surface; 8. Rayleigh-type surface wave on a viscoelastic half space; 9. General SII waves incident on multiple layers of viscoelastic media; 10. Love-type surface waves in multilayered viscoelastic media; 11. Appendices; 12. References; Index | |
520 | |a This book is a rigorous, self-contained exposition of the mathematical theory for wave propagation in layered media with arbitrary amounts of intrinsic absorption. The theory, previously unpublished in book form, provides solutions for fundamental wave-propagation problems and corresponding numerical results in the context of any media with a linear response (elastic or anelastic). It provides new insights regarding the physical characteristics for two- and three-dimensional anelastic body and surface waves. The book is an excellent graduate-level textbook. It permits fundamental elastic wave propagation to be taught in the broader context of wave propagation in any media with a linear response. The book is a valuable reference text. It provides tools for solving problems in seismology, geotechnical engineering, exploration geophysics, solid mechanics, and acoustics. The numerical examples and problem sets facilitate understanding by emphasizing important aspects of both the theory and the numerical results | ||
650 | 4 | |a Mathematik | |
650 | 4 | |a Waves / Mathematics | |
650 | 4 | |a Viscoelasticity | |
650 | 4 | |a Viscoelastic materials | |
650 | 0 | 7 | |a Elastische Welle |0 (DE-588)4151684-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Seismische Welle |0 (DE-588)4180762-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematisches Modell |0 (DE-588)4114528-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wellenausbreitung |0 (DE-588)4121912-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Seismische Welle |0 (DE-588)4180762-5 |D s |
689 | 0 | 1 | |a Elastische Welle |0 (DE-588)4151684-9 |D s |
689 | 0 | 2 | |a Wellenausbreitung |0 (DE-588)4121912-0 |D s |
689 | 0 | 3 | |a Mathematisches Modell |0 (DE-588)4114528-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-89853-9 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511580994 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029354592 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511580994 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511580994 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176892050276352 |
---|---|
any_adam_object | |
author | Borcherdt, Roger 1941- |
author_GND | (DE-588)1221681982 |
author_facet | Borcherdt, Roger 1941- |
author_role | aut |
author_sort | Borcherdt, Roger 1941- |
author_variant | r b rb |
building | Verbundindex |
bvnumber | BV043945621 |
classification_rvk | UF 5100 |
collection | ZDB-20-CBO |
contents | Preface; 1. One-dimensional viscoelasticity; 2. Three-dimensional viscoelasticity; 3. Viscoelastic P, SI and SII waves; 4. Framework for single-boundary reflection-refraction and surface-wave problems; 5. General P, SI, and SII waves incident on a viscoelastic boundary; 6. Numerical models for general waves reflected and refracted at viscoelastic boundaries; 7. General SI, P, and SII waves incident on a viscoelastic free surface; 8. Rayleigh-type surface wave on a viscoelastic half space; 9. General SII waves incident on multiple layers of viscoelastic media; 10. Love-type surface waves in multilayered viscoelastic media; 11. Appendices; 12. References; Index |
ctrlnum | (ZDB-20-CBO)CR9780511580994 (OCoLC)967605576 (DE-599)BVBBV043945621 |
dewey-full | 532/.0533 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 532 - Fluid mechanics |
dewey-raw | 532/.0533 |
dewey-search | 532/.0533 |
dewey-sort | 3532 3533 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1017/CBO9780511580994 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03927nmm a2200565zc 4500</leader><controlfield tag="001">BV043945621</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20201118 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2009 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511580994</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-58099-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511580994</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511580994</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967605576</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043945621</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">532/.0533</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 5100</subfield><subfield code="0">(DE-625)145596:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Borcherdt, Roger</subfield><subfield code="d">1941-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1221681982</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Viscoelastic waves in layered media</subfield><subfield code="c">Roger D. Borcherdt</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xv, 305 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Preface; 1. One-dimensional viscoelasticity; 2. Three-dimensional viscoelasticity; 3. Viscoelastic P, SI and SII waves; 4. Framework for single-boundary reflection-refraction and surface-wave problems; 5. General P, SI, and SII waves incident on a viscoelastic boundary; 6. Numerical models for general waves reflected and refracted at viscoelastic boundaries; 7. General SI, P, and SII waves incident on a viscoelastic free surface; 8. Rayleigh-type surface wave on a viscoelastic half space; 9. General SII waves incident on multiple layers of viscoelastic media; 10. Love-type surface waves in multilayered viscoelastic media; 11. Appendices; 12. References; Index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book is a rigorous, self-contained exposition of the mathematical theory for wave propagation in layered media with arbitrary amounts of intrinsic absorption. The theory, previously unpublished in book form, provides solutions for fundamental wave-propagation problems and corresponding numerical results in the context of any media with a linear response (elastic or anelastic). It provides new insights regarding the physical characteristics for two- and three-dimensional anelastic body and surface waves. The book is an excellent graduate-level textbook. It permits fundamental elastic wave propagation to be taught in the broader context of wave propagation in any media with a linear response. The book is a valuable reference text. It provides tools for solving problems in seismology, geotechnical engineering, exploration geophysics, solid mechanics, and acoustics. The numerical examples and problem sets facilitate understanding by emphasizing important aspects of both the theory and the numerical results</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Waves / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Viscoelasticity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Viscoelastic materials</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elastische Welle</subfield><subfield code="0">(DE-588)4151684-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Seismische Welle</subfield><subfield code="0">(DE-588)4180762-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wellenausbreitung</subfield><subfield code="0">(DE-588)4121912-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Seismische Welle</subfield><subfield code="0">(DE-588)4180762-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Elastische Welle</subfield><subfield code="0">(DE-588)4151684-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Wellenausbreitung</subfield><subfield code="0">(DE-588)4121912-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-89853-9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511580994</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029354592</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511580994</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511580994</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043945621 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:24Z |
institution | BVB |
isbn | 9780511580994 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029354592 |
oclc_num | 967605576 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xv, 305 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Borcherdt, Roger 1941- Verfasser (DE-588)1221681982 aut Viscoelastic waves in layered media Roger D. Borcherdt Cambridge Cambridge University Press 2009 1 online resource (xv, 305 pages) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 05 Oct 2015) Preface; 1. One-dimensional viscoelasticity; 2. Three-dimensional viscoelasticity; 3. Viscoelastic P, SI and SII waves; 4. Framework for single-boundary reflection-refraction and surface-wave problems; 5. General P, SI, and SII waves incident on a viscoelastic boundary; 6. Numerical models for general waves reflected and refracted at viscoelastic boundaries; 7. General SI, P, and SII waves incident on a viscoelastic free surface; 8. Rayleigh-type surface wave on a viscoelastic half space; 9. General SII waves incident on multiple layers of viscoelastic media; 10. Love-type surface waves in multilayered viscoelastic media; 11. Appendices; 12. References; Index This book is a rigorous, self-contained exposition of the mathematical theory for wave propagation in layered media with arbitrary amounts of intrinsic absorption. The theory, previously unpublished in book form, provides solutions for fundamental wave-propagation problems and corresponding numerical results in the context of any media with a linear response (elastic or anelastic). It provides new insights regarding the physical characteristics for two- and three-dimensional anelastic body and surface waves. The book is an excellent graduate-level textbook. It permits fundamental elastic wave propagation to be taught in the broader context of wave propagation in any media with a linear response. The book is a valuable reference text. It provides tools for solving problems in seismology, geotechnical engineering, exploration geophysics, solid mechanics, and acoustics. The numerical examples and problem sets facilitate understanding by emphasizing important aspects of both the theory and the numerical results Mathematik Waves / Mathematics Viscoelasticity Viscoelastic materials Elastische Welle (DE-588)4151684-9 gnd rswk-swf Seismische Welle (DE-588)4180762-5 gnd rswk-swf Mathematisches Modell (DE-588)4114528-8 gnd rswk-swf Wellenausbreitung (DE-588)4121912-0 gnd rswk-swf Seismische Welle (DE-588)4180762-5 s Elastische Welle (DE-588)4151684-9 s Wellenausbreitung (DE-588)4121912-0 s Mathematisches Modell (DE-588)4114528-8 s 1\p DE-604 Erscheint auch als Druckausgabe 978-0-521-89853-9 https://doi.org/10.1017/CBO9780511580994 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Borcherdt, Roger 1941- Viscoelastic waves in layered media Preface; 1. One-dimensional viscoelasticity; 2. Three-dimensional viscoelasticity; 3. Viscoelastic P, SI and SII waves; 4. Framework for single-boundary reflection-refraction and surface-wave problems; 5. General P, SI, and SII waves incident on a viscoelastic boundary; 6. Numerical models for general waves reflected and refracted at viscoelastic boundaries; 7. General SI, P, and SII waves incident on a viscoelastic free surface; 8. Rayleigh-type surface wave on a viscoelastic half space; 9. General SII waves incident on multiple layers of viscoelastic media; 10. Love-type surface waves in multilayered viscoelastic media; 11. Appendices; 12. References; Index Mathematik Waves / Mathematics Viscoelasticity Viscoelastic materials Elastische Welle (DE-588)4151684-9 gnd Seismische Welle (DE-588)4180762-5 gnd Mathematisches Modell (DE-588)4114528-8 gnd Wellenausbreitung (DE-588)4121912-0 gnd |
subject_GND | (DE-588)4151684-9 (DE-588)4180762-5 (DE-588)4114528-8 (DE-588)4121912-0 |
title | Viscoelastic waves in layered media |
title_auth | Viscoelastic waves in layered media |
title_exact_search | Viscoelastic waves in layered media |
title_full | Viscoelastic waves in layered media Roger D. Borcherdt |
title_fullStr | Viscoelastic waves in layered media Roger D. Borcherdt |
title_full_unstemmed | Viscoelastic waves in layered media Roger D. Borcherdt |
title_short | Viscoelastic waves in layered media |
title_sort | viscoelastic waves in layered media |
topic | Mathematik Waves / Mathematics Viscoelasticity Viscoelastic materials Elastische Welle (DE-588)4151684-9 gnd Seismische Welle (DE-588)4180762-5 gnd Mathematisches Modell (DE-588)4114528-8 gnd Wellenausbreitung (DE-588)4121912-0 gnd |
topic_facet | Mathematik Waves / Mathematics Viscoelasticity Viscoelastic materials Elastische Welle Seismische Welle Mathematisches Modell Wellenausbreitung |
url | https://doi.org/10.1017/CBO9780511580994 |
work_keys_str_mv | AT borcherdtroger viscoelasticwavesinlayeredmedia |