Concentration of measure for the analysis of randomized algorithms:

Randomized algorithms have become a central part of the algorithms curriculum, based on their increasingly widespread use in modern applications. This book presents a coherent and unified treatment of probabilistic techniques for obtaining high probability estimates on the performance of randomized...

Full description

Saved in:
Bibliographic Details
Main Authors: Dubhashi, Devdatt (Author), Panconesi, Alessandro (Author)
Format: Electronic eBook
Language:English
Published: Cambridge Cambridge University Press 2009
Subjects:
Online Access:DE-12
DE-92
Volltext
Summary:Randomized algorithms have become a central part of the algorithms curriculum, based on their increasingly widespread use in modern applications. This book presents a coherent and unified treatment of probabilistic techniques for obtaining high probability estimates on the performance of randomized algorithms. It covers the basic toolkit from the Chernoff–Hoeffding bounds to more sophisticated techniques like martingales and isoperimetric inequalities, as well as some recent developments like Talagrand's inequality, transportation cost inequalities and log-Sobolev inequalities. Along the way, variations on the basic theme are examined, such as Chernoff–Hoeffding bounds in dependent settings. The authors emphasise comparative study of the different methods, highlighting respective strengths and weaknesses in concrete example applications. The exposition is tailored to discrete settings sufficient for the analysis of algorithms, avoiding unnecessary measure-theoretic details, thus making the book accessible to computer scientists as well as probabilists and discrete mathematicians
Item Description:Title from publisher's bibliographic system (viewed on 05 Oct 2015)
Physical Description:1 online resource (xiv, 196 pages)
ISBN:9780511581274
DOI:10.1017/CBO9780511581274

There is no print copy available.

Interlibrary loan Place Request Caution: Not in THWS collection! Get full text