Martingales and stochastic integrals:
This book provides an introduction to the rapidly expanding theory of stochastic integration and martingales. The treatment is close to that developed by the French school of probabilists, but is more elementary than other texts. The presentation is abstract, but largely self-contained and Dr Kopp m...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1984
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 URL des Erstveröffentlichers |
Zusammenfassung: | This book provides an introduction to the rapidly expanding theory of stochastic integration and martingales. The treatment is close to that developed by the French school of probabilists, but is more elementary than other texts. The presentation is abstract, but largely self-contained and Dr Kopp makes fewer demands on the reader's background in probability theory than is usual. He gives a fairly full discussion of the measure theory and functional analysis needed for martingale theory, and describes the role of Brownian motion and the Poisson process as paradigm examples in the construction of abstract stochastic integrals. An appendix provides the reader with a glimpse of very recent developments in non-commutative integration theory which are of considerable importance in quantum mechanics. Thus equipped, the reader will have the necessary background to understand research in stochastic analysis. As a textbook, this account will be ideally suited to beginning graduate students in probability theory, and indeed it has evolved from such courses given at Hull University. It should also be of interest to pure mathematicians looking for a careful, yet concise introduction to martingale theory, and to physicists, engineers and economists who are finding that applications to their disciplines are becoming increasingly important |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xi, 202 pages) |
ISBN: | 9780511897221 |
DOI: | 10.1017/CBO9780511897221 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043945370 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1984 |||| o||u| ||||||eng d | ||
020 | |a 9780511897221 |c Online |9 978-0-511-89722-1 | ||
024 | 7 | |a 10.1017/CBO9780511897221 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511897221 | ||
035 | |a (OCoLC)849796376 | ||
035 | |a (DE-599)BVBBV043945370 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 519.2/87 |2 19eng | |
084 | |a SK 820 |0 (DE-625)143258: |2 rvk | ||
100 | 1 | |a Kopp, P. E. |d 1944- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Martingales and stochastic integrals |c P.E. Kopp |
246 | 1 | 3 | |a Martingales & Stochastic Integrals |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1984 | |
300 | |a 1 online resource (xi, 202 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a This book provides an introduction to the rapidly expanding theory of stochastic integration and martingales. The treatment is close to that developed by the French school of probabilists, but is more elementary than other texts. The presentation is abstract, but largely self-contained and Dr Kopp makes fewer demands on the reader's background in probability theory than is usual. He gives a fairly full discussion of the measure theory and functional analysis needed for martingale theory, and describes the role of Brownian motion and the Poisson process as paradigm examples in the construction of abstract stochastic integrals. An appendix provides the reader with a glimpse of very recent developments in non-commutative integration theory which are of considerable importance in quantum mechanics. Thus equipped, the reader will have the necessary background to understand research in stochastic analysis. As a textbook, this account will be ideally suited to beginning graduate students in probability theory, and indeed it has evolved from such courses given at Hull University. It should also be of interest to pure mathematicians looking for a careful, yet concise introduction to martingale theory, and to physicists, engineers and economists who are finding that applications to their disciplines are becoming increasingly important | ||
650 | 4 | |a Martingales (Mathematics) | |
650 | 4 | |a Stochastic integrals | |
650 | 0 | 7 | |a Martingaltheorie |0 (DE-588)4168982-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stochastisches Integral |0 (DE-588)4126478-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Martingal |0 (DE-588)4126466-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Martingal |0 (DE-588)4126466-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Stochastisches Integral |0 (DE-588)4126478-2 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Martingaltheorie |0 (DE-588)4168982-3 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-09033-9 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-24758-0 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511897221 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029354341 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511897221 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511897221 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176891529134080 |
---|---|
any_adam_object | |
author | Kopp, P. E. 1944- |
author_facet | Kopp, P. E. 1944- |
author_role | aut |
author_sort | Kopp, P. E. 1944- |
author_variant | p e k pe pek |
building | Verbundindex |
bvnumber | BV043945370 |
classification_rvk | SK 820 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511897221 (OCoLC)849796376 (DE-599)BVBBV043945370 |
dewey-full | 519.2/87 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2/87 |
dewey-search | 519.2/87 |
dewey-sort | 3519.2 287 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511897221 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03693nmm a2200577zc 4500</leader><controlfield tag="001">BV043945370</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1984 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511897221</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-89722-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511897221</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511897221</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)849796376</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043945370</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2/87</subfield><subfield code="2">19eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kopp, P. E.</subfield><subfield code="d">1944-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Martingales and stochastic integrals</subfield><subfield code="c">P.E. Kopp</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Martingales & Stochastic Integrals</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1984</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xi, 202 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book provides an introduction to the rapidly expanding theory of stochastic integration and martingales. The treatment is close to that developed by the French school of probabilists, but is more elementary than other texts. The presentation is abstract, but largely self-contained and Dr Kopp makes fewer demands on the reader's background in probability theory than is usual. He gives a fairly full discussion of the measure theory and functional analysis needed for martingale theory, and describes the role of Brownian motion and the Poisson process as paradigm examples in the construction of abstract stochastic integrals. An appendix provides the reader with a glimpse of very recent developments in non-commutative integration theory which are of considerable importance in quantum mechanics. Thus equipped, the reader will have the necessary background to understand research in stochastic analysis. As a textbook, this account will be ideally suited to beginning graduate students in probability theory, and indeed it has evolved from such courses given at Hull University. It should also be of interest to pure mathematicians looking for a careful, yet concise introduction to martingale theory, and to physicists, engineers and economists who are finding that applications to their disciplines are becoming increasingly important</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Martingales (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic integrals</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Martingaltheorie</subfield><subfield code="0">(DE-588)4168982-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastisches Integral</subfield><subfield code="0">(DE-588)4126478-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Martingal</subfield><subfield code="0">(DE-588)4126466-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Martingal</subfield><subfield code="0">(DE-588)4126466-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Stochastisches Integral</subfield><subfield code="0">(DE-588)4126478-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Martingaltheorie</subfield><subfield code="0">(DE-588)4168982-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-09033-9</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-24758-0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511897221</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029354341</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511897221</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511897221</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043945370 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:23Z |
institution | BVB |
isbn | 9780511897221 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029354341 |
oclc_num | 849796376 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xi, 202 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1984 |
publishDateSearch | 1984 |
publishDateSort | 1984 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Kopp, P. E. 1944- Verfasser aut Martingales and stochastic integrals P.E. Kopp Martingales & Stochastic Integrals Cambridge Cambridge University Press 1984 1 online resource (xi, 202 pages) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 05 Oct 2015) This book provides an introduction to the rapidly expanding theory of stochastic integration and martingales. The treatment is close to that developed by the French school of probabilists, but is more elementary than other texts. The presentation is abstract, but largely self-contained and Dr Kopp makes fewer demands on the reader's background in probability theory than is usual. He gives a fairly full discussion of the measure theory and functional analysis needed for martingale theory, and describes the role of Brownian motion and the Poisson process as paradigm examples in the construction of abstract stochastic integrals. An appendix provides the reader with a glimpse of very recent developments in non-commutative integration theory which are of considerable importance in quantum mechanics. Thus equipped, the reader will have the necessary background to understand research in stochastic analysis. As a textbook, this account will be ideally suited to beginning graduate students in probability theory, and indeed it has evolved from such courses given at Hull University. It should also be of interest to pure mathematicians looking for a careful, yet concise introduction to martingale theory, and to physicists, engineers and economists who are finding that applications to their disciplines are becoming increasingly important Martingales (Mathematics) Stochastic integrals Martingaltheorie (DE-588)4168982-3 gnd rswk-swf Stochastisches Integral (DE-588)4126478-2 gnd rswk-swf Martingal (DE-588)4126466-6 gnd rswk-swf Martingal (DE-588)4126466-6 s 1\p DE-604 Stochastisches Integral (DE-588)4126478-2 s 2\p DE-604 Martingaltheorie (DE-588)4168982-3 s 3\p DE-604 Erscheint auch als Druckausgabe 978-0-521-09033-9 Erscheint auch als Druckausgabe 978-0-521-24758-0 https://doi.org/10.1017/CBO9780511897221 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Kopp, P. E. 1944- Martingales and stochastic integrals Martingales (Mathematics) Stochastic integrals Martingaltheorie (DE-588)4168982-3 gnd Stochastisches Integral (DE-588)4126478-2 gnd Martingal (DE-588)4126466-6 gnd |
subject_GND | (DE-588)4168982-3 (DE-588)4126478-2 (DE-588)4126466-6 |
title | Martingales and stochastic integrals |
title_alt | Martingales & Stochastic Integrals |
title_auth | Martingales and stochastic integrals |
title_exact_search | Martingales and stochastic integrals |
title_full | Martingales and stochastic integrals P.E. Kopp |
title_fullStr | Martingales and stochastic integrals P.E. Kopp |
title_full_unstemmed | Martingales and stochastic integrals P.E. Kopp |
title_short | Martingales and stochastic integrals |
title_sort | martingales and stochastic integrals |
topic | Martingales (Mathematics) Stochastic integrals Martingaltheorie (DE-588)4168982-3 gnd Stochastisches Integral (DE-588)4126478-2 gnd Martingal (DE-588)4126466-6 gnd |
topic_facet | Martingales (Mathematics) Stochastic integrals Martingaltheorie Stochastisches Integral Martingal |
url | https://doi.org/10.1017/CBO9780511897221 |
work_keys_str_mv | AT kopppe martingalesandstochasticintegrals AT kopppe martingalesstochasticintegrals |