Bootstrap techniques for signal processing:
The statistical bootstrap is one of the methods that can be used to calculate estimates of a certain number of unknown parameters of a random process or a signal observed in noise, based on a random sample. Such situations are common in signal processing and the bootstrap is especially useful when o...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2004
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 URL des Erstveröffentlichers |
Zusammenfassung: | The statistical bootstrap is one of the methods that can be used to calculate estimates of a certain number of unknown parameters of a random process or a signal observed in noise, based on a random sample. Such situations are common in signal processing and the bootstrap is especially useful when only a small sample is available or an analytical analysis is too cumbersome or even impossible. This book covers the foundations of the bootstrap, its properties, its strengths and its limitations. The authors focus on bootstrap signal detection in Gaussian and non-Gaussian interference as well as bootstrap model selection. The theory developed in the book is supported by a number of useful practical examples written in MATLAB. The book is aimed at graduate students and engineers, and includes applications to real-world problems in areas such as radar and sonar, biomedical engineering and automotive engineering |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xiv, 217 pages) |
ISBN: | 9780511536717 |
DOI: | 10.1017/CBO9780511536717 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043945269 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2004 |||| o||u| ||||||eng d | ||
020 | |a 9780511536717 |c Online |9 978-0-511-53671-7 | ||
024 | 7 | |a 10.1017/CBO9780511536717 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511536717 | ||
035 | |a (OCoLC)850134672 | ||
035 | |a (DE-599)BVBBV043945269 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 621.382/2 |2 22 | |
100 | 1 | |a Zoubir, Abdelhak M. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Bootstrap techniques for signal processing |c Abdelhak M. Zoubir, D. Robert Iskander |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2004 | |
300 | |a 1 online resource (xiv, 217 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a The statistical bootstrap is one of the methods that can be used to calculate estimates of a certain number of unknown parameters of a random process or a signal observed in noise, based on a random sample. Such situations are common in signal processing and the bootstrap is especially useful when only a small sample is available or an analytical analysis is too cumbersome or even impossible. This book covers the foundations of the bootstrap, its properties, its strengths and its limitations. The authors focus on bootstrap signal detection in Gaussian and non-Gaussian interference as well as bootstrap model selection. The theory developed in the book is supported by a number of useful practical examples written in MATLAB. The book is aimed at graduate students and engineers, and includes applications to real-world problems in areas such as radar and sonar, biomedical engineering and automotive engineering | ||
650 | 4 | |a Mathematik | |
650 | 4 | |a Signal processing / Mathematics | |
650 | 4 | |a Image processing / Mathematics | |
650 | 4 | |a Bootstrap (Statistics) | |
700 | 1 | |a Iskander, D. Robert |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-03405-0 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-83127-7 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511536717 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029354239 | ||
966 | e | |u https://doi.org/10.1017/CBO9780511536717 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511536717 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176891321516032 |
---|---|
any_adam_object | |
author | Zoubir, Abdelhak M. |
author_facet | Zoubir, Abdelhak M. |
author_role | aut |
author_sort | Zoubir, Abdelhak M. |
author_variant | a m z am amz |
building | Verbundindex |
bvnumber | BV043945269 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511536717 (OCoLC)850134672 (DE-599)BVBBV043945269 |
dewey-full | 621.382/2 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.382/2 |
dewey-search | 621.382/2 |
dewey-sort | 3621.382 12 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Elektrotechnik / Elektronik / Nachrichtentechnik |
doi_str_mv | 10.1017/CBO9780511536717 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02629nmm a2200445zc 4500</leader><controlfield tag="001">BV043945269</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2004 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511536717</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-53671-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511536717</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511536717</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)850134672</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043945269</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.382/2</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zoubir, Abdelhak M.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bootstrap techniques for signal processing</subfield><subfield code="c">Abdelhak M. Zoubir, D. Robert Iskander</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiv, 217 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The statistical bootstrap is one of the methods that can be used to calculate estimates of a certain number of unknown parameters of a random process or a signal observed in noise, based on a random sample. Such situations are common in signal processing and the bootstrap is especially useful when only a small sample is available or an analytical analysis is too cumbersome or even impossible. This book covers the foundations of the bootstrap, its properties, its strengths and its limitations. The authors focus on bootstrap signal detection in Gaussian and non-Gaussian interference as well as bootstrap model selection. The theory developed in the book is supported by a number of useful practical examples written in MATLAB. The book is aimed at graduate students and engineers, and includes applications to real-world problems in areas such as radar and sonar, biomedical engineering and automotive engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Signal processing / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Image processing / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bootstrap (Statistics)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Iskander, D. Robert</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-03405-0</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-83127-7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511536717</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029354239</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511536717</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511536717</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043945269 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:23Z |
institution | BVB |
isbn | 9780511536717 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029354239 |
oclc_num | 850134672 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xiv, 217 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Zoubir, Abdelhak M. Verfasser aut Bootstrap techniques for signal processing Abdelhak M. Zoubir, D. Robert Iskander Cambridge Cambridge University Press 2004 1 online resource (xiv, 217 pages) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 05 Oct 2015) The statistical bootstrap is one of the methods that can be used to calculate estimates of a certain number of unknown parameters of a random process or a signal observed in noise, based on a random sample. Such situations are common in signal processing and the bootstrap is especially useful when only a small sample is available or an analytical analysis is too cumbersome or even impossible. This book covers the foundations of the bootstrap, its properties, its strengths and its limitations. The authors focus on bootstrap signal detection in Gaussian and non-Gaussian interference as well as bootstrap model selection. The theory developed in the book is supported by a number of useful practical examples written in MATLAB. The book is aimed at graduate students and engineers, and includes applications to real-world problems in areas such as radar and sonar, biomedical engineering and automotive engineering Mathematik Signal processing / Mathematics Image processing / Mathematics Bootstrap (Statistics) Iskander, D. Robert Sonstige oth Erscheint auch als Druckausgabe 978-0-521-03405-0 Erscheint auch als Druckausgabe 978-0-521-83127-7 https://doi.org/10.1017/CBO9780511536717 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Zoubir, Abdelhak M. Bootstrap techniques for signal processing Mathematik Signal processing / Mathematics Image processing / Mathematics Bootstrap (Statistics) |
title | Bootstrap techniques for signal processing |
title_auth | Bootstrap techniques for signal processing |
title_exact_search | Bootstrap techniques for signal processing |
title_full | Bootstrap techniques for signal processing Abdelhak M. Zoubir, D. Robert Iskander |
title_fullStr | Bootstrap techniques for signal processing Abdelhak M. Zoubir, D. Robert Iskander |
title_full_unstemmed | Bootstrap techniques for signal processing Abdelhak M. Zoubir, D. Robert Iskander |
title_short | Bootstrap techniques for signal processing |
title_sort | bootstrap techniques for signal processing |
topic | Mathematik Signal processing / Mathematics Image processing / Mathematics Bootstrap (Statistics) |
topic_facet | Mathematik Signal processing / Mathematics Image processing / Mathematics Bootstrap (Statistics) |
url | https://doi.org/10.1017/CBO9780511536717 |
work_keys_str_mv | AT zoubirabdelhakm bootstraptechniquesforsignalprocessing AT iskanderdrobert bootstraptechniquesforsignalprocessing |