Computational methods for integral equations:
Integral equations form an important class of problems, arising frequently in engineering, and in mathematical and scientific analysis. This textbook provides a readable account of techniques for their numerical solution. The authors devote their attention primarily to efficient techniques using hig...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1985
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | Integral equations form an important class of problems, arising frequently in engineering, and in mathematical and scientific analysis. This textbook provides a readable account of techniques for their numerical solution. The authors devote their attention primarily to efficient techniques using high order approximations, taking particular account of situations where singularities are present. The classes of problems which arise frequently in practice, Fredholm of the first and second kind and eigenvalue problems, are dealt with in depth. Volterra equations, although attractive to treat theoretically, arise less often in practical problems and so have been given less emphasis. Some knowledge of numerical methods and linear algebra is assumed, but the book includes introductory sections on numerical quadrature and function space concepts. This book should serve as a valuable text for final year undergraduate or postgraduate courses, and as an introduction or reference work for practising computational mathematicians, scientists and engineers |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xii, 376 pages) |
ISBN: | 9780511569609 |
DOI: | 10.1017/CBO9780511569609 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043945191 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1985 |||| o||u| ||||||eng d | ||
020 | |a 9780511569609 |c Online |9 978-0-511-56960-9 | ||
024 | 7 | |a 10.1017/CBO9780511569609 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511569609 | ||
035 | |a (OCoLC)849794226 | ||
035 | |a (DE-599)BVBBV043945191 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 515.4/5 |2 19eng | |
084 | |a SK 640 |0 (DE-625)143250: |2 rvk | ||
084 | |a SK 920 |0 (DE-625)143272: |2 rvk | ||
100 | 1 | |a Delves, L. M. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Computational methods for integral equations |c L.M. Delves & J.L. Mohamed |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1985 | |
300 | |a 1 online resource (xii, 376 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a The space L²(a, b) -- Numerical quadrature -- Introduction to the theory of linear integral equations of the second kind -- The Nystrom (quadrature) method for Fredholm equations of the second kind -- Quadrature methods for Volterra equations of the second kind -- Eigenvalue problems and the Fredholm alternative -- Expansion methods for Fredholm equations of the second kind -- Numerical techniques for expansion methods -- Analysis of the Galerkin method with orthogonal basis -- Numerical performance of algorithms for Fredholm equations of the second kind -- Singular integral equations -- Integral equations of the first kind -- Integro-differential equations -- Appendix: singular expansions | |
520 | |a Integral equations form an important class of problems, arising frequently in engineering, and in mathematical and scientific analysis. This textbook provides a readable account of techniques for their numerical solution. The authors devote their attention primarily to efficient techniques using high order approximations, taking particular account of situations where singularities are present. The classes of problems which arise frequently in practice, Fredholm of the first and second kind and eigenvalue problems, are dealt with in depth. Volterra equations, although attractive to treat theoretically, arise less often in practical problems and so have been given less emphasis. Some knowledge of numerical methods and linear algebra is assumed, but the book includes introductory sections on numerical quadrature and function space concepts. This book should serve as a valuable text for final year undergraduate or postgraduate courses, and as an introduction or reference work for practising computational mathematicians, scientists and engineers | ||
650 | 4 | |a Integral equations / Numerical solutions | |
650 | 0 | 7 | |a Numerische Mathematik |0 (DE-588)4042805-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Integralgleichung |0 (DE-588)4027229-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Integralgleichung |0 (DE-588)4027229-1 |D s |
689 | 0 | 1 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Numerische Mathematik |0 (DE-588)4042805-9 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Mohamed, J. L. |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-26629-1 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-35796-8 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511569609 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029354161 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511569609 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511569609 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176891136966656 |
---|---|
any_adam_object | |
author | Delves, L. M. |
author_facet | Delves, L. M. |
author_role | aut |
author_sort | Delves, L. M. |
author_variant | l m d lm lmd |
building | Verbundindex |
bvnumber | BV043945191 |
classification_rvk | SK 640 SK 920 |
collection | ZDB-20-CBO |
contents | The space L²(a, b) -- Numerical quadrature -- Introduction to the theory of linear integral equations of the second kind -- The Nystrom (quadrature) method for Fredholm equations of the second kind -- Quadrature methods for Volterra equations of the second kind -- Eigenvalue problems and the Fredholm alternative -- Expansion methods for Fredholm equations of the second kind -- Numerical techniques for expansion methods -- Analysis of the Galerkin method with orthogonal basis -- Numerical performance of algorithms for Fredholm equations of the second kind -- Singular integral equations -- Integral equations of the first kind -- Integro-differential equations -- Appendix: singular expansions |
ctrlnum | (ZDB-20-CBO)CR9780511569609 (OCoLC)849794226 (DE-599)BVBBV043945191 |
dewey-full | 515.4/5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.4/5 |
dewey-search | 515.4/5 |
dewey-sort | 3515.4 15 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511569609 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04065nmm a2200565zc 4500</leader><controlfield tag="001">BV043945191</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1985 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511569609</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-56960-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511569609</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511569609</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)849794226</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043945191</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.4/5</subfield><subfield code="2">19eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 640</subfield><subfield code="0">(DE-625)143250:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 920</subfield><subfield code="0">(DE-625)143272:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Delves, L. M.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Computational methods for integral equations</subfield><subfield code="c">L.M. Delves & J.L. Mohamed</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1985</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xii, 376 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">The space L²(a, b) -- Numerical quadrature -- Introduction to the theory of linear integral equations of the second kind -- The Nystrom (quadrature) method for Fredholm equations of the second kind -- Quadrature methods for Volterra equations of the second kind -- Eigenvalue problems and the Fredholm alternative -- Expansion methods for Fredholm equations of the second kind -- Numerical techniques for expansion methods -- Analysis of the Galerkin method with orthogonal basis -- Numerical performance of algorithms for Fredholm equations of the second kind -- Singular integral equations -- Integral equations of the first kind -- Integro-differential equations -- Appendix: singular expansions</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Integral equations form an important class of problems, arising frequently in engineering, and in mathematical and scientific analysis. This textbook provides a readable account of techniques for their numerical solution. The authors devote their attention primarily to efficient techniques using high order approximations, taking particular account of situations where singularities are present. The classes of problems which arise frequently in practice, Fredholm of the first and second kind and eigenvalue problems, are dealt with in depth. Volterra equations, although attractive to treat theoretically, arise less often in practical problems and so have been given less emphasis. Some knowledge of numerical methods and linear algebra is assumed, but the book includes introductory sections on numerical quadrature and function space concepts. This book should serve as a valuable text for final year undergraduate or postgraduate courses, and as an introduction or reference work for practising computational mathematicians, scientists and engineers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral equations / Numerical solutions</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerische Mathematik</subfield><subfield code="0">(DE-588)4042805-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Integralgleichung</subfield><subfield code="0">(DE-588)4027229-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Integralgleichung</subfield><subfield code="0">(DE-588)4027229-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Numerische Mathematik</subfield><subfield code="0">(DE-588)4042805-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mohamed, J. L.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-26629-1</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-35796-8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511569609</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029354161</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511569609</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511569609</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043945191 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:23Z |
institution | BVB |
isbn | 9780511569609 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029354161 |
oclc_num | 849794226 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xii, 376 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1985 |
publishDateSearch | 1985 |
publishDateSort | 1985 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Delves, L. M. Verfasser aut Computational methods for integral equations L.M. Delves & J.L. Mohamed Cambridge Cambridge University Press 1985 1 online resource (xii, 376 pages) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 05 Oct 2015) The space L²(a, b) -- Numerical quadrature -- Introduction to the theory of linear integral equations of the second kind -- The Nystrom (quadrature) method for Fredholm equations of the second kind -- Quadrature methods for Volterra equations of the second kind -- Eigenvalue problems and the Fredholm alternative -- Expansion methods for Fredholm equations of the second kind -- Numerical techniques for expansion methods -- Analysis of the Galerkin method with orthogonal basis -- Numerical performance of algorithms for Fredholm equations of the second kind -- Singular integral equations -- Integral equations of the first kind -- Integro-differential equations -- Appendix: singular expansions Integral equations form an important class of problems, arising frequently in engineering, and in mathematical and scientific analysis. This textbook provides a readable account of techniques for their numerical solution. The authors devote their attention primarily to efficient techniques using high order approximations, taking particular account of situations where singularities are present. The classes of problems which arise frequently in practice, Fredholm of the first and second kind and eigenvalue problems, are dealt with in depth. Volterra equations, although attractive to treat theoretically, arise less often in practical problems and so have been given less emphasis. Some knowledge of numerical methods and linear algebra is assumed, but the book includes introductory sections on numerical quadrature and function space concepts. This book should serve as a valuable text for final year undergraduate or postgraduate courses, and as an introduction or reference work for practising computational mathematicians, scientists and engineers Integral equations / Numerical solutions Numerische Mathematik (DE-588)4042805-9 gnd rswk-swf Numerisches Verfahren (DE-588)4128130-5 gnd rswk-swf Integralgleichung (DE-588)4027229-1 gnd rswk-swf Integralgleichung (DE-588)4027229-1 s Numerisches Verfahren (DE-588)4128130-5 s 1\p DE-604 Numerische Mathematik (DE-588)4042805-9 s 2\p DE-604 Mohamed, J. L. Sonstige oth Erscheint auch als Druckausgabe 978-0-521-26629-1 Erscheint auch als Druckausgabe 978-0-521-35796-8 https://doi.org/10.1017/CBO9780511569609 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Delves, L. M. Computational methods for integral equations The space L²(a, b) -- Numerical quadrature -- Introduction to the theory of linear integral equations of the second kind -- The Nystrom (quadrature) method for Fredholm equations of the second kind -- Quadrature methods for Volterra equations of the second kind -- Eigenvalue problems and the Fredholm alternative -- Expansion methods for Fredholm equations of the second kind -- Numerical techniques for expansion methods -- Analysis of the Galerkin method with orthogonal basis -- Numerical performance of algorithms for Fredholm equations of the second kind -- Singular integral equations -- Integral equations of the first kind -- Integro-differential equations -- Appendix: singular expansions Integral equations / Numerical solutions Numerische Mathematik (DE-588)4042805-9 gnd Numerisches Verfahren (DE-588)4128130-5 gnd Integralgleichung (DE-588)4027229-1 gnd |
subject_GND | (DE-588)4042805-9 (DE-588)4128130-5 (DE-588)4027229-1 |
title | Computational methods for integral equations |
title_auth | Computational methods for integral equations |
title_exact_search | Computational methods for integral equations |
title_full | Computational methods for integral equations L.M. Delves & J.L. Mohamed |
title_fullStr | Computational methods for integral equations L.M. Delves & J.L. Mohamed |
title_full_unstemmed | Computational methods for integral equations L.M. Delves & J.L. Mohamed |
title_short | Computational methods for integral equations |
title_sort | computational methods for integral equations |
topic | Integral equations / Numerical solutions Numerische Mathematik (DE-588)4042805-9 gnd Numerisches Verfahren (DE-588)4128130-5 gnd Integralgleichung (DE-588)4027229-1 gnd |
topic_facet | Integral equations / Numerical solutions Numerische Mathematik Numerisches Verfahren Integralgleichung |
url | https://doi.org/10.1017/CBO9780511569609 |
work_keys_str_mv | AT delveslm computationalmethodsforintegralequations AT mohamedjl computationalmethodsforintegralequations |