The one-dimensional Hubbard model:
The description of solids at a microscopic level is complex, involving the interaction of a huge number of its constituents, such as ions or electrons. It is impossible to solve the corresponding many-body problems analytically or numerically, although much insight can be gained from the analysis of...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2005
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | The description of solids at a microscopic level is complex, involving the interaction of a huge number of its constituents, such as ions or electrons. It is impossible to solve the corresponding many-body problems analytically or numerically, although much insight can be gained from the analysis of simplified models. An important example is the Hubbard model, which describes interacting electrons in narrow energy bands, and which has been applied to problems as diverse as high-Tc superconductivity, band magnetism, and the metal-insulator transition. This 2005 book presents a coherent, self-contained account of the exact solution of the Hubbard model in one dimension. The early chapters will be accessible to beginning graduate students with a basic knowledge of quantum mechanics and statistical mechanics. The later chapters address more advanced topics, and are intended as a guide for researchers to some of the more topical results in the field of integrable models |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xv, 674 pages) |
ISBN: | 9780511534843 |
DOI: | 10.1017/CBO9780511534843 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043944853 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2005 |||| o||u| ||||||eng d | ||
020 | |a 9780511534843 |c Online |9 978-0-511-53484-3 | ||
024 | 7 | |a 10.1017/CBO9780511534843 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511534843 | ||
035 | |a (OCoLC)992909185 | ||
035 | |a (DE-599)BVBBV043944853 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 530.4/1 |2 22 | |
084 | |a UG 3100 |0 (DE-625)145625: |2 rvk | ||
084 | |a UP 3600 |0 (DE-625)146385: |2 rvk | ||
100 | 1 | |a Essler, Fabian H. L. |e Verfasser |4 aut | |
245 | 1 | 0 | |a The one-dimensional Hubbard model |c Fabian H.L. Essler [and others] |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2005 | |
300 | |a 1 online resource (xv, 674 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a The Hubbard Hamiltonian and its symmetries -- The Bethe ansatz solution -- String hypothesis -- Thermodynamics in the yang-yang approach -- Ground state properties in the thermodynamic limit -- Excited states at zero temperature -- Finite size corrections at zero temperature -- Asymptotics of correlation functions -- Scaling and continuum limits at half-filling -- Universal correlations at low density -- The algebraic approach to the Hubbard model -- The path integral approach to thermodynamics -- The Yangian symmetry of the Hubbard model -- S-matrix and Yangian symmetry in the infinite interval limit -- Hubbard model in the attractive case -- Mathematical appendices | |
520 | |a The description of solids at a microscopic level is complex, involving the interaction of a huge number of its constituents, such as ions or electrons. It is impossible to solve the corresponding many-body problems analytically or numerically, although much insight can be gained from the analysis of simplified models. An important example is the Hubbard model, which describes interacting electrons in narrow energy bands, and which has been applied to problems as diverse as high-Tc superconductivity, band magnetism, and the metal-insulator transition. This 2005 book presents a coherent, self-contained account of the exact solution of the Hubbard model in one dimension. The early chapters will be accessible to beginning graduate students with a basic knowledge of quantum mechanics and statistical mechanics. The later chapters address more advanced topics, and are intended as a guide for researchers to some of the more topical results in the field of integrable models | ||
650 | 4 | |a Quantentheorie | |
650 | 4 | |a Hubbard model | |
650 | 4 | |a Quantum theory | |
650 | 4 | |a Statistical mechanics | |
650 | 0 | 7 | |a Hubbard-Modell |0 (DE-588)4160713-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Dimension 1 |0 (DE-588)4323094-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Bethe-Ansatz |0 (DE-588)4121011-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Hubbard-Modell |0 (DE-588)4160713-2 |D s |
689 | 0 | 1 | |a Dimension 1 |0 (DE-588)4323094-5 |D s |
689 | 0 | 2 | |a Bethe-Ansatz |0 (DE-588)4121011-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-14394-3 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-80262-8 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511534843 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029353824 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511534843 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511534843 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176890260357120 |
---|---|
any_adam_object | |
author | Essler, Fabian H. L. |
author_facet | Essler, Fabian H. L. |
author_role | aut |
author_sort | Essler, Fabian H. L. |
author_variant | f h l e fhl fhle |
building | Verbundindex |
bvnumber | BV043944853 |
classification_rvk | UG 3100 UP 3600 |
collection | ZDB-20-CBO |
contents | The Hubbard Hamiltonian and its symmetries -- The Bethe ansatz solution -- String hypothesis -- Thermodynamics in the yang-yang approach -- Ground state properties in the thermodynamic limit -- Excited states at zero temperature -- Finite size corrections at zero temperature -- Asymptotics of correlation functions -- Scaling and continuum limits at half-filling -- Universal correlations at low density -- The algebraic approach to the Hubbard model -- The path integral approach to thermodynamics -- The Yangian symmetry of the Hubbard model -- S-matrix and Yangian symmetry in the infinite interval limit -- Hubbard model in the attractive case -- Mathematical appendices |
ctrlnum | (ZDB-20-CBO)CR9780511534843 (OCoLC)992909185 (DE-599)BVBBV043944853 |
dewey-full | 530.4/1 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.4/1 |
dewey-search | 530.4/1 |
dewey-sort | 3530.4 11 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1017/CBO9780511534843 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03836nmm a2200565zc 4500</leader><controlfield tag="001">BV043944853</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2005 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511534843</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-53484-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511534843</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511534843</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)992909185</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043944853</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.4/1</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UG 3100</subfield><subfield code="0">(DE-625)145625:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UP 3600</subfield><subfield code="0">(DE-625)146385:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Essler, Fabian H. L.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The one-dimensional Hubbard model</subfield><subfield code="c">Fabian H.L. Essler [and others]</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2005</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xv, 674 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">The Hubbard Hamiltonian and its symmetries -- The Bethe ansatz solution -- String hypothesis -- Thermodynamics in the yang-yang approach -- Ground state properties in the thermodynamic limit -- Excited states at zero temperature -- Finite size corrections at zero temperature -- Asymptotics of correlation functions -- Scaling and continuum limits at half-filling -- Universal correlations at low density -- The algebraic approach to the Hubbard model -- The path integral approach to thermodynamics -- The Yangian symmetry of the Hubbard model -- S-matrix and Yangian symmetry in the infinite interval limit -- Hubbard model in the attractive case -- Mathematical appendices</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The description of solids at a microscopic level is complex, involving the interaction of a huge number of its constituents, such as ions or electrons. It is impossible to solve the corresponding many-body problems analytically or numerically, although much insight can be gained from the analysis of simplified models. An important example is the Hubbard model, which describes interacting electrons in narrow energy bands, and which has been applied to problems as diverse as high-Tc superconductivity, band magnetism, and the metal-insulator transition. This 2005 book presents a coherent, self-contained account of the exact solution of the Hubbard model in one dimension. The early chapters will be accessible to beginning graduate students with a basic knowledge of quantum mechanics and statistical mechanics. The later chapters address more advanced topics, and are intended as a guide for researchers to some of the more topical results in the field of integrable models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantentheorie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hubbard model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical mechanics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hubbard-Modell</subfield><subfield code="0">(DE-588)4160713-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dimension 1</subfield><subfield code="0">(DE-588)4323094-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bethe-Ansatz</subfield><subfield code="0">(DE-588)4121011-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hubbard-Modell</subfield><subfield code="0">(DE-588)4160713-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Dimension 1</subfield><subfield code="0">(DE-588)4323094-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Bethe-Ansatz</subfield><subfield code="0">(DE-588)4121011-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-14394-3</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-80262-8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511534843</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029353824</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511534843</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511534843</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043944853 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:22Z |
institution | BVB |
isbn | 9780511534843 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029353824 |
oclc_num | 992909185 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xv, 674 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2005 |
publishDateSearch | 2005 |
publishDateSort | 2005 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Essler, Fabian H. L. Verfasser aut The one-dimensional Hubbard model Fabian H.L. Essler [and others] Cambridge Cambridge University Press 2005 1 online resource (xv, 674 pages) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 05 Oct 2015) The Hubbard Hamiltonian and its symmetries -- The Bethe ansatz solution -- String hypothesis -- Thermodynamics in the yang-yang approach -- Ground state properties in the thermodynamic limit -- Excited states at zero temperature -- Finite size corrections at zero temperature -- Asymptotics of correlation functions -- Scaling and continuum limits at half-filling -- Universal correlations at low density -- The algebraic approach to the Hubbard model -- The path integral approach to thermodynamics -- The Yangian symmetry of the Hubbard model -- S-matrix and Yangian symmetry in the infinite interval limit -- Hubbard model in the attractive case -- Mathematical appendices The description of solids at a microscopic level is complex, involving the interaction of a huge number of its constituents, such as ions or electrons. It is impossible to solve the corresponding many-body problems analytically or numerically, although much insight can be gained from the analysis of simplified models. An important example is the Hubbard model, which describes interacting electrons in narrow energy bands, and which has been applied to problems as diverse as high-Tc superconductivity, band magnetism, and the metal-insulator transition. This 2005 book presents a coherent, self-contained account of the exact solution of the Hubbard model in one dimension. The early chapters will be accessible to beginning graduate students with a basic knowledge of quantum mechanics and statistical mechanics. The later chapters address more advanced topics, and are intended as a guide for researchers to some of the more topical results in the field of integrable models Quantentheorie Hubbard model Quantum theory Statistical mechanics Hubbard-Modell (DE-588)4160713-2 gnd rswk-swf Dimension 1 (DE-588)4323094-5 gnd rswk-swf Bethe-Ansatz (DE-588)4121011-6 gnd rswk-swf Hubbard-Modell (DE-588)4160713-2 s Dimension 1 (DE-588)4323094-5 s Bethe-Ansatz (DE-588)4121011-6 s 1\p DE-604 Erscheint auch als Druckausgabe 978-0-521-14394-3 Erscheint auch als Druckausgabe 978-0-521-80262-8 https://doi.org/10.1017/CBO9780511534843 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Essler, Fabian H. L. The one-dimensional Hubbard model The Hubbard Hamiltonian and its symmetries -- The Bethe ansatz solution -- String hypothesis -- Thermodynamics in the yang-yang approach -- Ground state properties in the thermodynamic limit -- Excited states at zero temperature -- Finite size corrections at zero temperature -- Asymptotics of correlation functions -- Scaling and continuum limits at half-filling -- Universal correlations at low density -- The algebraic approach to the Hubbard model -- The path integral approach to thermodynamics -- The Yangian symmetry of the Hubbard model -- S-matrix and Yangian symmetry in the infinite interval limit -- Hubbard model in the attractive case -- Mathematical appendices Quantentheorie Hubbard model Quantum theory Statistical mechanics Hubbard-Modell (DE-588)4160713-2 gnd Dimension 1 (DE-588)4323094-5 gnd Bethe-Ansatz (DE-588)4121011-6 gnd |
subject_GND | (DE-588)4160713-2 (DE-588)4323094-5 (DE-588)4121011-6 |
title | The one-dimensional Hubbard model |
title_auth | The one-dimensional Hubbard model |
title_exact_search | The one-dimensional Hubbard model |
title_full | The one-dimensional Hubbard model Fabian H.L. Essler [and others] |
title_fullStr | The one-dimensional Hubbard model Fabian H.L. Essler [and others] |
title_full_unstemmed | The one-dimensional Hubbard model Fabian H.L. Essler [and others] |
title_short | The one-dimensional Hubbard model |
title_sort | the one dimensional hubbard model |
topic | Quantentheorie Hubbard model Quantum theory Statistical mechanics Hubbard-Modell (DE-588)4160713-2 gnd Dimension 1 (DE-588)4323094-5 gnd Bethe-Ansatz (DE-588)4121011-6 gnd |
topic_facet | Quantentheorie Hubbard model Quantum theory Statistical mechanics Hubbard-Modell Dimension 1 Bethe-Ansatz |
url | https://doi.org/10.1017/CBO9780511534843 |
work_keys_str_mv | AT esslerfabianhl theonedimensionalhubbardmodel |