Data-intensive computing: architectures, algorithms, and applications
The world is awash with digital data from social networks, blogs, business, science and engineering. Data-intensive computing facilitates understanding of complex problems that must process massive amounts of data. Through the development of new classes of software, algorithms and hardware, data-int...
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2013
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | The world is awash with digital data from social networks, blogs, business, science and engineering. Data-intensive computing facilitates understanding of complex problems that must process massive amounts of data. Through the development of new classes of software, algorithms and hardware, data-intensive applications can provide timely and meaningful analytical results in response to exponentially growing data complexity and associated analysis requirements. This emerging area brings many challenges that are different from traditional high-performance computing. This reference for computing professionals and researchers describes the dimensions of the field, the key challenges, the state of the art and the characteristics of likely approaches that future data-intensive problems will require. Chapters cover general principles and methods for designing such systems and for managing and analyzing the big data sets of today that live in the cloud and describe example applications in bioinformatics and cybersecurity that illustrate these principles in practice |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (viii, 290 pages) |
ISBN: | 9780511844409 |
DOI: | 10.1017/CBO9780511844409 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043944639 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2013 |||| o||u| ||||||eng d | ||
020 | |a 9780511844409 |c Online |9 978-0-511-84440-9 | ||
024 | 7 | |a 10.1017/CBO9780511844409 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511844409 | ||
035 | |a (OCoLC)847031171 | ||
035 | |a (DE-599)BVBBV043944639 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 004.5 |2 23 | |
084 | |a ST 270 |0 (DE-625)143638: |2 rvk | ||
084 | |a ST 530 |0 (DE-625)143679: |2 rvk | ||
245 | 1 | 0 | |a Data-intensive computing |b architectures, algorithms, and applications |c edited by Ian Gorton, Pacific Northwest National Laboratory, Deborah K. Gracio, Pacific Northwest National Laboratory |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2013 | |
300 | |a 1 online resource (viii, 290 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a 1. Data-intensive computing: a challenge for the 21st century / Ian Gorton and Deborah K. Gracio -- 2. The anatomy of data-intensive computing applications / Ian Gorton and Deborah K. Gracio -- 3. Hardware architectures for data-intensive computing problems: a case study for string matching / Antonino Tumeo, Oreste Villa and Daniel Chavarría-Miranda -- 4. Data management architectures / Terence Critchlow, Ghaleb Abdulla, Jacek Becla, Kerstin Kleese-Van Dam, Sam Lang and Deborah L. McGuinness -- 5. Large scale data management techniques in cloud computing platforms / Sherif Sakr and Anna Liu -- 6. Dimension reduction for streaming data / Chandrika Kamath -- 7. Binary classification with support vector machines / Patrick Nichols, Bobbie-Jo Webb-Robertson and Christopher Oehmen -- 8. Beyond MapReduce: new requirements for scalable data processing / Bill Howe -- 9. Letting the data do the talking: hypothesis discovery from large-scale datasets in real time / Christopher Oehmen, Scott Dowson, Wes Hatley, Justin Almquist, Bobbie-Jo Webb-Robertson, Jason McDermott, Ian Gorton and Lee Ann McCue -- 10. Data-intensive visual analysis for cybersecurity / William A. Pike, Daniel M. Best, Douglas V. Love and Shawn J. Bohn | |
520 | |a The world is awash with digital data from social networks, blogs, business, science and engineering. Data-intensive computing facilitates understanding of complex problems that must process massive amounts of data. Through the development of new classes of software, algorithms and hardware, data-intensive applications can provide timely and meaningful analytical results in response to exponentially growing data complexity and associated analysis requirements. This emerging area brings many challenges that are different from traditional high-performance computing. This reference for computing professionals and researchers describes the dimensions of the field, the key challenges, the state of the art and the characteristics of likely approaches that future data-intensive problems will require. Chapters cover general principles and methods for designing such systems and for managing and analyzing the big data sets of today that live in the cloud and describe example applications in bioinformatics and cybersecurity that illustrate these principles in practice | ||
650 | 4 | |a High performance computing | |
650 | 4 | |a Database management | |
650 | 4 | |a Computer storage devices | |
650 | 4 | |a Software architecture | |
650 | 4 | |a Data transmission systems | |
650 | 0 | 7 | |a Big Data |0 (DE-588)4802620-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hochleistungsrechnen |0 (DE-588)4532701-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Computerunterstütztes Verfahren |0 (DE-588)4139030-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Datenverwaltung |0 (DE-588)4011168-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Verarbeitung |0 (DE-588)4537851-4 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Big Data |0 (DE-588)4802620-7 |D s |
689 | 0 | 1 | |a Verarbeitung |0 (DE-588)4537851-4 |D s |
689 | 0 | 2 | |a Computerunterstütztes Verfahren |0 (DE-588)4139030-1 |D s |
689 | 0 | 3 | |a Hochleistungsrechnen |0 (DE-588)4532701-4 |D s |
689 | 0 | 4 | |a Datenverwaltung |0 (DE-588)4011168-4 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
700 | 1 | |a Gorton, Ian |4 edt | |
700 | 1 | |a Gracio, Deborah K. |d 1965- |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-19195-1 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511844409 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029353609 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511844409 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511844409 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176889742360576 |
---|---|
any_adam_object | |
author2 | Gorton, Ian Gracio, Deborah K. 1965- |
author2_role | edt edt |
author2_variant | i g ig d k g dk dkg |
author_facet | Gorton, Ian Gracio, Deborah K. 1965- |
building | Verbundindex |
bvnumber | BV043944639 |
classification_rvk | ST 270 ST 530 |
collection | ZDB-20-CBO |
contents | 1. Data-intensive computing: a challenge for the 21st century / Ian Gorton and Deborah K. Gracio -- 2. The anatomy of data-intensive computing applications / Ian Gorton and Deborah K. Gracio -- 3. Hardware architectures for data-intensive computing problems: a case study for string matching / Antonino Tumeo, Oreste Villa and Daniel Chavarría-Miranda -- 4. Data management architectures / Terence Critchlow, Ghaleb Abdulla, Jacek Becla, Kerstin Kleese-Van Dam, Sam Lang and Deborah L. McGuinness -- 5. Large scale data management techniques in cloud computing platforms / Sherif Sakr and Anna Liu -- 6. Dimension reduction for streaming data / Chandrika Kamath -- 7. Binary classification with support vector machines / Patrick Nichols, Bobbie-Jo Webb-Robertson and Christopher Oehmen -- 8. Beyond MapReduce: new requirements for scalable data processing / Bill Howe -- 9. Letting the data do the talking: hypothesis discovery from large-scale datasets in real time / Christopher Oehmen, Scott Dowson, Wes Hatley, Justin Almquist, Bobbie-Jo Webb-Robertson, Jason McDermott, Ian Gorton and Lee Ann McCue -- 10. Data-intensive visual analysis for cybersecurity / William A. Pike, Daniel M. Best, Douglas V. Love and Shawn J. Bohn |
ctrlnum | (ZDB-20-CBO)CR9780511844409 (OCoLC)847031171 (DE-599)BVBBV043944639 |
dewey-full | 004.5 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 004 - Computer science |
dewey-raw | 004.5 |
dewey-search | 004.5 |
dewey-sort | 14.5 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
doi_str_mv | 10.1017/CBO9780511844409 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05063nmm a2200649zc 4500</leader><controlfield tag="001">BV043944639</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2013 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511844409</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-84440-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511844409</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511844409</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)847031171</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043944639</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">004.5</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 270</subfield><subfield code="0">(DE-625)143638:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 530</subfield><subfield code="0">(DE-625)143679:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Data-intensive computing</subfield><subfield code="b">architectures, algorithms, and applications</subfield><subfield code="c">edited by Ian Gorton, Pacific Northwest National Laboratory, Deborah K. Gracio, Pacific Northwest National Laboratory</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (viii, 290 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1. Data-intensive computing: a challenge for the 21st century / Ian Gorton and Deborah K. Gracio -- 2. The anatomy of data-intensive computing applications / Ian Gorton and Deborah K. Gracio -- 3. Hardware architectures for data-intensive computing problems: a case study for string matching / Antonino Tumeo, Oreste Villa and Daniel Chavarría-Miranda -- 4. Data management architectures / Terence Critchlow, Ghaleb Abdulla, Jacek Becla, Kerstin Kleese-Van Dam, Sam Lang and Deborah L. McGuinness -- 5. Large scale data management techniques in cloud computing platforms / Sherif Sakr and Anna Liu -- 6. Dimension reduction for streaming data / Chandrika Kamath -- 7. Binary classification with support vector machines / Patrick Nichols, Bobbie-Jo Webb-Robertson and Christopher Oehmen -- 8. Beyond MapReduce: new requirements for scalable data processing / Bill Howe -- 9. Letting the data do the talking: hypothesis discovery from large-scale datasets in real time / Christopher Oehmen, Scott Dowson, Wes Hatley, Justin Almquist, Bobbie-Jo Webb-Robertson, Jason McDermott, Ian Gorton and Lee Ann McCue -- 10. Data-intensive visual analysis for cybersecurity / William A. Pike, Daniel M. Best, Douglas V. Love and Shawn J. Bohn</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The world is awash with digital data from social networks, blogs, business, science and engineering. Data-intensive computing facilitates understanding of complex problems that must process massive amounts of data. Through the development of new classes of software, algorithms and hardware, data-intensive applications can provide timely and meaningful analytical results in response to exponentially growing data complexity and associated analysis requirements. This emerging area brings many challenges that are different from traditional high-performance computing. This reference for computing professionals and researchers describes the dimensions of the field, the key challenges, the state of the art and the characteristics of likely approaches that future data-intensive problems will require. Chapters cover general principles and methods for designing such systems and for managing and analyzing the big data sets of today that live in the cloud and describe example applications in bioinformatics and cybersecurity that illustrate these principles in practice</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High performance computing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Database management</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer storage devices</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Software architecture</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data transmission systems</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Big Data</subfield><subfield code="0">(DE-588)4802620-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hochleistungsrechnen</subfield><subfield code="0">(DE-588)4532701-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Computerunterstütztes Verfahren</subfield><subfield code="0">(DE-588)4139030-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenverwaltung</subfield><subfield code="0">(DE-588)4011168-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Verarbeitung</subfield><subfield code="0">(DE-588)4537851-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Big Data</subfield><subfield code="0">(DE-588)4802620-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Verarbeitung</subfield><subfield code="0">(DE-588)4537851-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Computerunterstütztes Verfahren</subfield><subfield code="0">(DE-588)4139030-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Hochleistungsrechnen</subfield><subfield code="0">(DE-588)4532701-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Datenverwaltung</subfield><subfield code="0">(DE-588)4011168-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gorton, Ian</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gracio, Deborah K.</subfield><subfield code="d">1965-</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-19195-1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511844409</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029353609</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511844409</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511844409</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV043944639 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:21Z |
institution | BVB |
isbn | 9780511844409 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029353609 |
oclc_num | 847031171 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (viii, 290 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Data-intensive computing architectures, algorithms, and applications edited by Ian Gorton, Pacific Northwest National Laboratory, Deborah K. Gracio, Pacific Northwest National Laboratory Cambridge Cambridge University Press 2013 1 online resource (viii, 290 pages) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 05 Oct 2015) 1. Data-intensive computing: a challenge for the 21st century / Ian Gorton and Deborah K. Gracio -- 2. The anatomy of data-intensive computing applications / Ian Gorton and Deborah K. Gracio -- 3. Hardware architectures for data-intensive computing problems: a case study for string matching / Antonino Tumeo, Oreste Villa and Daniel Chavarría-Miranda -- 4. Data management architectures / Terence Critchlow, Ghaleb Abdulla, Jacek Becla, Kerstin Kleese-Van Dam, Sam Lang and Deborah L. McGuinness -- 5. Large scale data management techniques in cloud computing platforms / Sherif Sakr and Anna Liu -- 6. Dimension reduction for streaming data / Chandrika Kamath -- 7. Binary classification with support vector machines / Patrick Nichols, Bobbie-Jo Webb-Robertson and Christopher Oehmen -- 8. Beyond MapReduce: new requirements for scalable data processing / Bill Howe -- 9. Letting the data do the talking: hypothesis discovery from large-scale datasets in real time / Christopher Oehmen, Scott Dowson, Wes Hatley, Justin Almquist, Bobbie-Jo Webb-Robertson, Jason McDermott, Ian Gorton and Lee Ann McCue -- 10. Data-intensive visual analysis for cybersecurity / William A. Pike, Daniel M. Best, Douglas V. Love and Shawn J. Bohn The world is awash with digital data from social networks, blogs, business, science and engineering. Data-intensive computing facilitates understanding of complex problems that must process massive amounts of data. Through the development of new classes of software, algorithms and hardware, data-intensive applications can provide timely and meaningful analytical results in response to exponentially growing data complexity and associated analysis requirements. This emerging area brings many challenges that are different from traditional high-performance computing. This reference for computing professionals and researchers describes the dimensions of the field, the key challenges, the state of the art and the characteristics of likely approaches that future data-intensive problems will require. Chapters cover general principles and methods for designing such systems and for managing and analyzing the big data sets of today that live in the cloud and describe example applications in bioinformatics and cybersecurity that illustrate these principles in practice High performance computing Database management Computer storage devices Software architecture Data transmission systems Big Data (DE-588)4802620-7 gnd rswk-swf Hochleistungsrechnen (DE-588)4532701-4 gnd rswk-swf Computerunterstütztes Verfahren (DE-588)4139030-1 gnd rswk-swf Datenverwaltung (DE-588)4011168-4 gnd rswk-swf Verarbeitung (DE-588)4537851-4 gnd rswk-swf 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content Big Data (DE-588)4802620-7 s Verarbeitung (DE-588)4537851-4 s Computerunterstütztes Verfahren (DE-588)4139030-1 s Hochleistungsrechnen (DE-588)4532701-4 s Datenverwaltung (DE-588)4011168-4 s 2\p DE-604 Gorton, Ian edt Gracio, Deborah K. 1965- edt Erscheint auch als Druckausgabe 978-0-521-19195-1 https://doi.org/10.1017/CBO9780511844409 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Data-intensive computing architectures, algorithms, and applications 1. Data-intensive computing: a challenge for the 21st century / Ian Gorton and Deborah K. Gracio -- 2. The anatomy of data-intensive computing applications / Ian Gorton and Deborah K. Gracio -- 3. Hardware architectures for data-intensive computing problems: a case study for string matching / Antonino Tumeo, Oreste Villa and Daniel Chavarría-Miranda -- 4. Data management architectures / Terence Critchlow, Ghaleb Abdulla, Jacek Becla, Kerstin Kleese-Van Dam, Sam Lang and Deborah L. McGuinness -- 5. Large scale data management techniques in cloud computing platforms / Sherif Sakr and Anna Liu -- 6. Dimension reduction for streaming data / Chandrika Kamath -- 7. Binary classification with support vector machines / Patrick Nichols, Bobbie-Jo Webb-Robertson and Christopher Oehmen -- 8. Beyond MapReduce: new requirements for scalable data processing / Bill Howe -- 9. Letting the data do the talking: hypothesis discovery from large-scale datasets in real time / Christopher Oehmen, Scott Dowson, Wes Hatley, Justin Almquist, Bobbie-Jo Webb-Robertson, Jason McDermott, Ian Gorton and Lee Ann McCue -- 10. Data-intensive visual analysis for cybersecurity / William A. Pike, Daniel M. Best, Douglas V. Love and Shawn J. Bohn High performance computing Database management Computer storage devices Software architecture Data transmission systems Big Data (DE-588)4802620-7 gnd Hochleistungsrechnen (DE-588)4532701-4 gnd Computerunterstütztes Verfahren (DE-588)4139030-1 gnd Datenverwaltung (DE-588)4011168-4 gnd Verarbeitung (DE-588)4537851-4 gnd |
subject_GND | (DE-588)4802620-7 (DE-588)4532701-4 (DE-588)4139030-1 (DE-588)4011168-4 (DE-588)4537851-4 (DE-588)4143413-4 |
title | Data-intensive computing architectures, algorithms, and applications |
title_auth | Data-intensive computing architectures, algorithms, and applications |
title_exact_search | Data-intensive computing architectures, algorithms, and applications |
title_full | Data-intensive computing architectures, algorithms, and applications edited by Ian Gorton, Pacific Northwest National Laboratory, Deborah K. Gracio, Pacific Northwest National Laboratory |
title_fullStr | Data-intensive computing architectures, algorithms, and applications edited by Ian Gorton, Pacific Northwest National Laboratory, Deborah K. Gracio, Pacific Northwest National Laboratory |
title_full_unstemmed | Data-intensive computing architectures, algorithms, and applications edited by Ian Gorton, Pacific Northwest National Laboratory, Deborah K. Gracio, Pacific Northwest National Laboratory |
title_short | Data-intensive computing |
title_sort | data intensive computing architectures algorithms and applications |
title_sub | architectures, algorithms, and applications |
topic | High performance computing Database management Computer storage devices Software architecture Data transmission systems Big Data (DE-588)4802620-7 gnd Hochleistungsrechnen (DE-588)4532701-4 gnd Computerunterstütztes Verfahren (DE-588)4139030-1 gnd Datenverwaltung (DE-588)4011168-4 gnd Verarbeitung (DE-588)4537851-4 gnd |
topic_facet | High performance computing Database management Computer storage devices Software architecture Data transmission systems Big Data Hochleistungsrechnen Computerunterstütztes Verfahren Datenverwaltung Verarbeitung Aufsatzsammlung |
url | https://doi.org/10.1017/CBO9780511844409 |
work_keys_str_mv | AT gortonian dataintensivecomputingarchitecturesalgorithmsandapplications AT graciodeborahk dataintensivecomputingarchitecturesalgorithmsandapplications |