Chaotic dynamics: an introduction based on classical mechanics
In the past few decades we have come to understand that even motions in simple systems can have complex and surprising properties. Chaotic Dynamics provides a clear introduction to these chaotic phenomena, based on geometrical interpretations and simple arguments, without the need for prior in-depth...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2006
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | In the past few decades we have come to understand that even motions in simple systems can have complex and surprising properties. Chaotic Dynamics provides a clear introduction to these chaotic phenomena, based on geometrical interpretations and simple arguments, without the need for prior in-depth scientific and mathematical knowledge. Richly illustrated throughout, examples are taken from classical mechanics whose elementary laws are familiar to the reader. In order to emphasize the general features of chaos, the most important relations are also given in simple mathematical forms, independent of any mechanical interpretation. A broad range of potential applications are presented, ranging from everyday phenomena through engineering and environmental problems to astronomical aspects. Chaos occurs in a variety of scientific disciplines, and proves to be the rule, not the exception. This book is primarily intended for undergraduate students in science, engineering, and mathematics |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xvii, 393 pages) |
ISBN: | 9780511803277 |
DOI: | 10.1017/CBO9780511803277 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043944313 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2006 |||| o||u| ||||||eng d | ||
020 | |a 9780511803277 |c Online |9 978-0-511-80327-7 | ||
024 | 7 | |a 10.1017/CBO9780511803277 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511803277 | ||
035 | |a (OCoLC)992910474 | ||
035 | |a (DE-599)BVBBV043944313 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 003.857 |2 22 | |
084 | |a UG 3900 |0 (DE-625)145629: |2 rvk | ||
100 | 1 | |a Tél, Tamás |e Verfasser |4 aut | |
240 | 1 | 0 | |a Kaotikus dinamika |
245 | 1 | 0 | |a Chaotic dynamics |b an introduction based on classical mechanics |c Tamás Tél, Márton Gruiz ; translated Katalin Kulacsy |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2006 | |
300 | |a 1 online resource (xvii, 393 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | 0 | |t List of colour plates |t Preface |t Acknowledgements |t How to read the book |g pt. 1 |t The phenomenon : complex motion, unusual geometry |g 1 |t Chaotic motion |g 2 |t Fractal objects |g pt. 2 |t Introductory concepts |g 3 |t Regular motion |g 4 |t Driven motion |g pt. 3 |t Investigation of chaotic motion |g 5 |t Chaos in dissipative systems |g 6 |t Transient chaos in dissipative systems |g 7 |t Chaos in conservative systems |g 8 |t Chaotic scattering |g 9 |t Applications of chaos |g 10 |t Epilogue : outlook |t Appendix |g A.1 |t Deriving stroboscopic maps |g A.2 |t Writing equations in dimensionless forms |g A.3 |t Numerical solution of ordinary differential equations |g A.4 |t Sample programs |g A.5 |t Numerical determination of chaos parameters |t Solutions to the problems |t Bibliography |t Index |
520 | |a In the past few decades we have come to understand that even motions in simple systems can have complex and surprising properties. Chaotic Dynamics provides a clear introduction to these chaotic phenomena, based on geometrical interpretations and simple arguments, without the need for prior in-depth scientific and mathematical knowledge. Richly illustrated throughout, examples are taken from classical mechanics whose elementary laws are familiar to the reader. In order to emphasize the general features of chaos, the most important relations are also given in simple mathematical forms, independent of any mechanical interpretation. A broad range of potential applications are presented, ranging from everyday phenomena through engineering and environmental problems to astronomical aspects. Chaos occurs in a variety of scientific disciplines, and proves to be the rule, not the exception. This book is primarily intended for undergraduate students in science, engineering, and mathematics | ||
650 | 4 | |a Chaotic behavior in systems | |
650 | 4 | |a Dynamics | |
650 | 0 | 7 | |a Chaotisches System |0 (DE-588)4316104-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Dynamik |0 (DE-588)4013384-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Chaotisches System |0 (DE-588)4316104-2 |D s |
689 | 0 | 1 | |a Dynamik |0 (DE-588)4013384-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Gruiz, Márton |e Sonstige |4 oth | |
700 | 1 | |a Kulacsy, Katalin |4 trl | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-54783-3 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-83912-9 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511803277 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029353283 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511803277 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511803277 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176889076514816 |
---|---|
any_adam_object | |
author | Tél, Tamás |
author2 | Kulacsy, Katalin |
author2_role | trl |
author2_variant | k k kk |
author_facet | Tél, Tamás Kulacsy, Katalin |
author_role | aut |
author_sort | Tél, Tamás |
author_variant | t t tt |
building | Verbundindex |
bvnumber | BV043944313 |
classification_rvk | UG 3900 |
collection | ZDB-20-CBO |
contents | List of colour plates Preface Acknowledgements How to read the book The phenomenon : complex motion, unusual geometry Chaotic motion Fractal objects Introductory concepts Regular motion Driven motion Investigation of chaotic motion Chaos in dissipative systems Transient chaos in dissipative systems Chaos in conservative systems Chaotic scattering Applications of chaos Epilogue : outlook Appendix Deriving stroboscopic maps Writing equations in dimensionless forms Numerical solution of ordinary differential equations Sample programs Numerical determination of chaos parameters Solutions to the problems Bibliography Index |
ctrlnum | (ZDB-20-CBO)CR9780511803277 (OCoLC)992910474 (DE-599)BVBBV043944313 |
dewey-full | 003.857 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 003 - Systems |
dewey-raw | 003.857 |
dewey-search | 003.857 |
dewey-sort | 13.857 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Physik Informatik |
doi_str_mv | 10.1017/CBO9780511803277 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03844nmm a2200541zc 4500</leader><controlfield tag="001">BV043944313</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2006 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511803277</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-80327-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511803277</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511803277</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)992910474</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043944313</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">003.857</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UG 3900</subfield><subfield code="0">(DE-625)145629:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tél, Tamás</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Kaotikus dinamika</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Chaotic dynamics</subfield><subfield code="b">an introduction based on classical mechanics</subfield><subfield code="c">Tamás Tél, Márton Gruiz ; translated Katalin Kulacsy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xvii, 393 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2="0"><subfield code="t">List of colour plates</subfield><subfield code="t">Preface</subfield><subfield code="t">Acknowledgements</subfield><subfield code="t">How to read the book</subfield><subfield code="g">pt. 1</subfield><subfield code="t">The phenomenon : complex motion, unusual geometry</subfield><subfield code="g">1</subfield><subfield code="t">Chaotic motion</subfield><subfield code="g">2</subfield><subfield code="t">Fractal objects</subfield><subfield code="g">pt. 2</subfield><subfield code="t">Introductory concepts</subfield><subfield code="g">3</subfield><subfield code="t">Regular motion</subfield><subfield code="g">4</subfield><subfield code="t">Driven motion</subfield><subfield code="g">pt. 3</subfield><subfield code="t">Investigation of chaotic motion</subfield><subfield code="g">5</subfield><subfield code="t">Chaos in dissipative systems</subfield><subfield code="g">6</subfield><subfield code="t">Transient chaos in dissipative systems</subfield><subfield code="g">7</subfield><subfield code="t">Chaos in conservative systems</subfield><subfield code="g">8</subfield><subfield code="t">Chaotic scattering</subfield><subfield code="g">9</subfield><subfield code="t">Applications of chaos</subfield><subfield code="g">10</subfield><subfield code="t">Epilogue : outlook</subfield><subfield code="t">Appendix</subfield><subfield code="g">A.1</subfield><subfield code="t">Deriving stroboscopic maps</subfield><subfield code="g">A.2</subfield><subfield code="t">Writing equations in dimensionless forms</subfield><subfield code="g">A.3</subfield><subfield code="t">Numerical solution of ordinary differential equations</subfield><subfield code="g">A.4</subfield><subfield code="t">Sample programs</subfield><subfield code="g">A.5</subfield><subfield code="t">Numerical determination of chaos parameters</subfield><subfield code="t">Solutions to the problems</subfield><subfield code="t">Bibliography</subfield><subfield code="t">Index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In the past few decades we have come to understand that even motions in simple systems can have complex and surprising properties. Chaotic Dynamics provides a clear introduction to these chaotic phenomena, based on geometrical interpretations and simple arguments, without the need for prior in-depth scientific and mathematical knowledge. Richly illustrated throughout, examples are taken from classical mechanics whose elementary laws are familiar to the reader. In order to emphasize the general features of chaos, the most important relations are also given in simple mathematical forms, independent of any mechanical interpretation. A broad range of potential applications are presented, ranging from everyday phenomena through engineering and environmental problems to astronomical aspects. Chaos occurs in a variety of scientific disciplines, and proves to be the rule, not the exception. This book is primarily intended for undergraduate students in science, engineering, and mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chaotic behavior in systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Chaotisches System</subfield><subfield code="0">(DE-588)4316104-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dynamik</subfield><subfield code="0">(DE-588)4013384-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Chaotisches System</subfield><subfield code="0">(DE-588)4316104-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Dynamik</subfield><subfield code="0">(DE-588)4013384-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gruiz, Márton</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kulacsy, Katalin</subfield><subfield code="4">trl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-54783-3</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-83912-9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511803277</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029353283</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511803277</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511803277</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043944313 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:21Z |
institution | BVB |
isbn | 9780511803277 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029353283 |
oclc_num | 992910474 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xvii, 393 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Tél, Tamás Verfasser aut Kaotikus dinamika Chaotic dynamics an introduction based on classical mechanics Tamás Tél, Márton Gruiz ; translated Katalin Kulacsy Cambridge Cambridge University Press 2006 1 online resource (xvii, 393 pages) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 05 Oct 2015) List of colour plates Preface Acknowledgements How to read the book pt. 1 The phenomenon : complex motion, unusual geometry 1 Chaotic motion 2 Fractal objects pt. 2 Introductory concepts 3 Regular motion 4 Driven motion pt. 3 Investigation of chaotic motion 5 Chaos in dissipative systems 6 Transient chaos in dissipative systems 7 Chaos in conservative systems 8 Chaotic scattering 9 Applications of chaos 10 Epilogue : outlook Appendix A.1 Deriving stroboscopic maps A.2 Writing equations in dimensionless forms A.3 Numerical solution of ordinary differential equations A.4 Sample programs A.5 Numerical determination of chaos parameters Solutions to the problems Bibliography Index In the past few decades we have come to understand that even motions in simple systems can have complex and surprising properties. Chaotic Dynamics provides a clear introduction to these chaotic phenomena, based on geometrical interpretations and simple arguments, without the need for prior in-depth scientific and mathematical knowledge. Richly illustrated throughout, examples are taken from classical mechanics whose elementary laws are familiar to the reader. In order to emphasize the general features of chaos, the most important relations are also given in simple mathematical forms, independent of any mechanical interpretation. A broad range of potential applications are presented, ranging from everyday phenomena through engineering and environmental problems to astronomical aspects. Chaos occurs in a variety of scientific disciplines, and proves to be the rule, not the exception. This book is primarily intended for undergraduate students in science, engineering, and mathematics Chaotic behavior in systems Dynamics Chaotisches System (DE-588)4316104-2 gnd rswk-swf Dynamik (DE-588)4013384-9 gnd rswk-swf Chaotisches System (DE-588)4316104-2 s Dynamik (DE-588)4013384-9 s 1\p DE-604 Gruiz, Márton Sonstige oth Kulacsy, Katalin trl Erscheint auch als Druckausgabe 978-0-521-54783-3 Erscheint auch als Druckausgabe 978-0-521-83912-9 https://doi.org/10.1017/CBO9780511803277 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Tél, Tamás Chaotic dynamics an introduction based on classical mechanics List of colour plates Preface Acknowledgements How to read the book The phenomenon : complex motion, unusual geometry Chaotic motion Fractal objects Introductory concepts Regular motion Driven motion Investigation of chaotic motion Chaos in dissipative systems Transient chaos in dissipative systems Chaos in conservative systems Chaotic scattering Applications of chaos Epilogue : outlook Appendix Deriving stroboscopic maps Writing equations in dimensionless forms Numerical solution of ordinary differential equations Sample programs Numerical determination of chaos parameters Solutions to the problems Bibliography Index Chaotic behavior in systems Dynamics Chaotisches System (DE-588)4316104-2 gnd Dynamik (DE-588)4013384-9 gnd |
subject_GND | (DE-588)4316104-2 (DE-588)4013384-9 |
title | Chaotic dynamics an introduction based on classical mechanics |
title_alt | Kaotikus dinamika List of colour plates Preface Acknowledgements How to read the book The phenomenon : complex motion, unusual geometry Chaotic motion Fractal objects Introductory concepts Regular motion Driven motion Investigation of chaotic motion Chaos in dissipative systems Transient chaos in dissipative systems Chaos in conservative systems Chaotic scattering Applications of chaos Epilogue : outlook Appendix Deriving stroboscopic maps Writing equations in dimensionless forms Numerical solution of ordinary differential equations Sample programs Numerical determination of chaos parameters Solutions to the problems Bibliography Index |
title_auth | Chaotic dynamics an introduction based on classical mechanics |
title_exact_search | Chaotic dynamics an introduction based on classical mechanics |
title_full | Chaotic dynamics an introduction based on classical mechanics Tamás Tél, Márton Gruiz ; translated Katalin Kulacsy |
title_fullStr | Chaotic dynamics an introduction based on classical mechanics Tamás Tél, Márton Gruiz ; translated Katalin Kulacsy |
title_full_unstemmed | Chaotic dynamics an introduction based on classical mechanics Tamás Tél, Márton Gruiz ; translated Katalin Kulacsy |
title_short | Chaotic dynamics |
title_sort | chaotic dynamics an introduction based on classical mechanics |
title_sub | an introduction based on classical mechanics |
topic | Chaotic behavior in systems Dynamics Chaotisches System (DE-588)4316104-2 gnd Dynamik (DE-588)4013384-9 gnd |
topic_facet | Chaotic behavior in systems Dynamics Chaotisches System Dynamik |
url | https://doi.org/10.1017/CBO9780511803277 |
work_keys_str_mv | AT teltamas kaotikusdinamika AT gruizmarton kaotikusdinamika AT kulacsykatalin kaotikusdinamika AT teltamas chaoticdynamicsanintroductionbasedonclassicalmechanics AT gruizmarton chaoticdynamicsanintroductionbasedonclassicalmechanics AT kulacsykatalin chaoticdynamicsanintroductionbasedonclassicalmechanics |