The higher arithmetic: an introduction to the theory of numbers
The theory of numbers is generally considered to be the 'purest' branch of pure mathematics and demands exactness of thought and exposition from its devotees. It is also one of the most highly active and engaging areas of mathematics. Now into its eighth edition The Higher Arithmetic intro...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2008
|
Ausgabe: | Eight edition |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 URL des Erstveröffentlichers |
Zusammenfassung: | The theory of numbers is generally considered to be the 'purest' branch of pure mathematics and demands exactness of thought and exposition from its devotees. It is also one of the most highly active and engaging areas of mathematics. Now into its eighth edition The Higher Arithmetic introduces the concepts and theorems of number theory in a way that does not require the reader to have an in-depth knowledge of the theory of numbers but also touches upon matters of deep mathematical significance. Since earlier editions, additional material written by J. H. Davenport has been added, on topics such as Wiles' proof of Fermat's Last Theorem, computers and number theory, and primality testing. Written to be accessible to the general reader, with only high school mathematics as prerequisite, this classic book is also ideal for undergraduate courses on number theory, and covers all the necessary material clearly and succinctly |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (ix, 239 pages) |
ISBN: | 9780511818097 |
DOI: | 10.1017/CBO9780511818097 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043944253 | ||
003 | DE-604 | ||
005 | 20171115 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2008 |||| o||u| ||||||eng d | ||
020 | |a 9780511818097 |c Online |9 978-0-511-81809-7 | ||
024 | 7 | |a 10.1017/CBO9780511818097 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511818097 | ||
035 | |a (OCoLC)967603647 | ||
035 | |a (DE-599)BVBBV043944253 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 512.7 |2 22 | |
084 | |a SK 180 |0 (DE-625)143222: |2 rvk | ||
100 | 1 | |a Davenport, Harold |d 1907-1969 |e Verfasser |0 (DE-588)117709360 |4 aut | |
245 | 1 | 0 | |a The higher arithmetic |b an introduction to the theory of numbers |c H. Davenport ; editing and additional material by James H. Davenport |
250 | |a Eight edition | ||
264 | 1 | |a Cambridge |b Cambridge University Press |c 2008 | |
300 | |a 1 online resource (ix, 239 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a Introduction; 1. Factorization and the primes; 2. Congruences; 3. Quadratic residues; 4. Continued fractions; 5. Sums of squares; 6. Quadratic forms; 7. Some Diophantine equations; 8. Computers and number theory; Exercises; Hints; Answers; Bibliography; Index; Additional notes | |
520 | |a The theory of numbers is generally considered to be the 'purest' branch of pure mathematics and demands exactness of thought and exposition from its devotees. It is also one of the most highly active and engaging areas of mathematics. Now into its eighth edition The Higher Arithmetic introduces the concepts and theorems of number theory in a way that does not require the reader to have an in-depth knowledge of the theory of numbers but also touches upon matters of deep mathematical significance. Since earlier editions, additional material written by J. H. Davenport has been added, on topics such as Wiles' proof of Fermat's Last Theorem, computers and number theory, and primality testing. Written to be accessible to the general reader, with only high school mathematics as prerequisite, this classic book is also ideal for undergraduate courses on number theory, and covers all the necessary material clearly and succinctly | ||
650 | 4 | |a Number theory | |
650 | 0 | 7 | |a Zahlentheorie |0 (DE-588)4067277-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Arithmetik |0 (DE-588)4002919-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Zahlentheorie |0 (DE-588)4067277-3 |D s |
689 | 0 | 1 | |a Arithmetik |0 (DE-588)4002919-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Davenport, James Harold |d 1953- |0 (DE-588)1032924691 |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-72236-0 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511818097 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029353224 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511818097 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511818097 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176888932859904 |
---|---|
any_adam_object | |
author | Davenport, Harold 1907-1969 |
author2 | Davenport, James Harold 1953- |
author2_role | edt |
author2_variant | j h d jh jhd |
author_GND | (DE-588)117709360 (DE-588)1032924691 |
author_facet | Davenport, Harold 1907-1969 Davenport, James Harold 1953- |
author_role | aut |
author_sort | Davenport, Harold 1907-1969 |
author_variant | h d hd |
building | Verbundindex |
bvnumber | BV043944253 |
classification_rvk | SK 180 |
collection | ZDB-20-CBO |
contents | Introduction; 1. Factorization and the primes; 2. Congruences; 3. Quadratic residues; 4. Continued fractions; 5. Sums of squares; 6. Quadratic forms; 7. Some Diophantine equations; 8. Computers and number theory; Exercises; Hints; Answers; Bibliography; Index; Additional notes |
ctrlnum | (ZDB-20-CBO)CR9780511818097 (OCoLC)967603647 (DE-599)BVBBV043944253 |
dewey-full | 512.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.7 |
dewey-search | 512.7 |
dewey-sort | 3512.7 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511818097 |
edition | Eight edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03252nmm a2200505zc 4500</leader><controlfield tag="001">BV043944253</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171115 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2008 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511818097</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-81809-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511818097</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511818097</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967603647</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043944253</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.7</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 180</subfield><subfield code="0">(DE-625)143222:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Davenport, Harold</subfield><subfield code="d">1907-1969</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)117709360</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The higher arithmetic</subfield><subfield code="b">an introduction to the theory of numbers</subfield><subfield code="c">H. Davenport ; editing and additional material by James H. Davenport</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Eight edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (ix, 239 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Introduction; 1. Factorization and the primes; 2. Congruences; 3. Quadratic residues; 4. Continued fractions; 5. Sums of squares; 6. Quadratic forms; 7. Some Diophantine equations; 8. Computers and number theory; Exercises; Hints; Answers; Bibliography; Index; Additional notes</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The theory of numbers is generally considered to be the 'purest' branch of pure mathematics and demands exactness of thought and exposition from its devotees. It is also one of the most highly active and engaging areas of mathematics. Now into its eighth edition The Higher Arithmetic introduces the concepts and theorems of number theory in a way that does not require the reader to have an in-depth knowledge of the theory of numbers but also touches upon matters of deep mathematical significance. Since earlier editions, additional material written by J. H. Davenport has been added, on topics such as Wiles' proof of Fermat's Last Theorem, computers and number theory, and primality testing. Written to be accessible to the general reader, with only high school mathematics as prerequisite, this classic book is also ideal for undergraduate courses on number theory, and covers all the necessary material clearly and succinctly</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zahlentheorie</subfield><subfield code="0">(DE-588)4067277-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Arithmetik</subfield><subfield code="0">(DE-588)4002919-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Zahlentheorie</subfield><subfield code="0">(DE-588)4067277-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Arithmetik</subfield><subfield code="0">(DE-588)4002919-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Davenport, James Harold</subfield><subfield code="d">1953-</subfield><subfield code="0">(DE-588)1032924691</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-72236-0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511818097</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029353224</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511818097</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511818097</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043944253 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:21Z |
institution | BVB |
isbn | 9780511818097 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029353224 |
oclc_num | 967603647 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (ix, 239 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Davenport, Harold 1907-1969 Verfasser (DE-588)117709360 aut The higher arithmetic an introduction to the theory of numbers H. Davenport ; editing and additional material by James H. Davenport Eight edition Cambridge Cambridge University Press 2008 1 online resource (ix, 239 pages) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 05 Oct 2015) Introduction; 1. Factorization and the primes; 2. Congruences; 3. Quadratic residues; 4. Continued fractions; 5. Sums of squares; 6. Quadratic forms; 7. Some Diophantine equations; 8. Computers and number theory; Exercises; Hints; Answers; Bibliography; Index; Additional notes The theory of numbers is generally considered to be the 'purest' branch of pure mathematics and demands exactness of thought and exposition from its devotees. It is also one of the most highly active and engaging areas of mathematics. Now into its eighth edition The Higher Arithmetic introduces the concepts and theorems of number theory in a way that does not require the reader to have an in-depth knowledge of the theory of numbers but also touches upon matters of deep mathematical significance. Since earlier editions, additional material written by J. H. Davenport has been added, on topics such as Wiles' proof of Fermat's Last Theorem, computers and number theory, and primality testing. Written to be accessible to the general reader, with only high school mathematics as prerequisite, this classic book is also ideal for undergraduate courses on number theory, and covers all the necessary material clearly and succinctly Number theory Zahlentheorie (DE-588)4067277-3 gnd rswk-swf Arithmetik (DE-588)4002919-0 gnd rswk-swf Zahlentheorie (DE-588)4067277-3 s Arithmetik (DE-588)4002919-0 s 1\p DE-604 Davenport, James Harold 1953- (DE-588)1032924691 edt Erscheint auch als Druckausgabe 978-0-521-72236-0 https://doi.org/10.1017/CBO9780511818097 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Davenport, Harold 1907-1969 The higher arithmetic an introduction to the theory of numbers Introduction; 1. Factorization and the primes; 2. Congruences; 3. Quadratic residues; 4. Continued fractions; 5. Sums of squares; 6. Quadratic forms; 7. Some Diophantine equations; 8. Computers and number theory; Exercises; Hints; Answers; Bibliography; Index; Additional notes Number theory Zahlentheorie (DE-588)4067277-3 gnd Arithmetik (DE-588)4002919-0 gnd |
subject_GND | (DE-588)4067277-3 (DE-588)4002919-0 |
title | The higher arithmetic an introduction to the theory of numbers |
title_auth | The higher arithmetic an introduction to the theory of numbers |
title_exact_search | The higher arithmetic an introduction to the theory of numbers |
title_full | The higher arithmetic an introduction to the theory of numbers H. Davenport ; editing and additional material by James H. Davenport |
title_fullStr | The higher arithmetic an introduction to the theory of numbers H. Davenport ; editing and additional material by James H. Davenport |
title_full_unstemmed | The higher arithmetic an introduction to the theory of numbers H. Davenport ; editing and additional material by James H. Davenport |
title_short | The higher arithmetic |
title_sort | the higher arithmetic an introduction to the theory of numbers |
title_sub | an introduction to the theory of numbers |
topic | Number theory Zahlentheorie (DE-588)4067277-3 gnd Arithmetik (DE-588)4002919-0 gnd |
topic_facet | Number theory Zahlentheorie Arithmetik |
url | https://doi.org/10.1017/CBO9780511818097 |
work_keys_str_mv | AT davenportharold thehigherarithmeticanintroductiontothetheoryofnumbers AT davenportjamesharold thehigherarithmeticanintroductiontothetheoryofnumbers |