Bayesian logical data analysis for the physical sciences: a comparative approach with Mathematica support
Bayesian inference provides a simple and unified approach to data analysis, allowing experimenters to assign probabilities to competing hypotheses of interest, on the basis of the current state of knowledge. By incorporating relevant prior information, it can sometimes improve model parameter estima...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2005
|
Schlagworte: | |
Online-Zugang: | DE-12 DE-92 Volltext |
Zusammenfassung: | Bayesian inference provides a simple and unified approach to data analysis, allowing experimenters to assign probabilities to competing hypotheses of interest, on the basis of the current state of knowledge. By incorporating relevant prior information, it can sometimes improve model parameter estimates by many orders of magnitude. This book provides a clear exposition of the underlying concepts with many worked examples and problem sets. It also discusses implementation, including an introduction to Markov chain Monte-Carlo integration and linear and nonlinear model fitting. Particularly extensive coverage of spectral analysis (detecting and measuring periodic signals) includes a self-contained introduction to Fourier and discrete Fourier methods. There is a chapter devoted to Bayesian inference with Poisson sampling, and three chapters on frequentist methods help to bridge the gap between the frequentist and Bayesian approaches. Supporting Mathematica notebooks with solutions to selected problems, additional worked examples, and a Mathematica tutorial are available at www.cambridge.org/9780521150125 |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xvii, 468 pages) |
ISBN: | 9780511791277 |
DOI: | 10.1017/CBO9780511791277 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043944230 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2005 |||| o||u| ||||||eng d | ||
020 | |a 9780511791277 |c Online |9 978-0-511-79127-7 | ||
024 | 7 | |a 10.1017/CBO9780511791277 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511791277 | ||
035 | |a (OCoLC)859644240 | ||
035 | |a (DE-599)BVBBV043944230 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 519.5/42 |2 22 | |
084 | |a SK 830 |0 (DE-625)143259: |2 rvk | ||
100 | 1 | |a Gregory, P. C. |d 1941- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Bayesian logical data analysis for the physical sciences |b a comparative approach with Mathematica support |c P.C. Gregory |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2005 | |
300 | |a 1 online resource (xvii, 468 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a Bayesian inference provides a simple and unified approach to data analysis, allowing experimenters to assign probabilities to competing hypotheses of interest, on the basis of the current state of knowledge. By incorporating relevant prior information, it can sometimes improve model parameter estimates by many orders of magnitude. This book provides a clear exposition of the underlying concepts with many worked examples and problem sets. It also discusses implementation, including an introduction to Markov chain Monte-Carlo integration and linear and nonlinear model fitting. Particularly extensive coverage of spectral analysis (detecting and measuring periodic signals) includes a self-contained introduction to Fourier and discrete Fourier methods. There is a chapter devoted to Bayesian inference with Poisson sampling, and three chapters on frequentist methods help to bridge the gap between the frequentist and Bayesian approaches. Supporting Mathematica notebooks with solutions to selected problems, additional worked examples, and a Mathematica tutorial are available at www.cambridge.org/9780521150125 | ||
630 | 0 | 4 | |a Mathematica (Computer file) |
650 | 4 | |a Bayesian statistical decision theory | |
650 | 4 | |a Physical sciences / Statistical methods | |
650 | 0 | 7 | |a Bayes-Verfahren |0 (DE-588)4204326-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Datenanalyse |0 (DE-588)4123037-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Physik |0 (DE-588)4045956-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Physik |0 (DE-588)4045956-1 |D s |
689 | 0 | 1 | |a Datenanalyse |0 (DE-588)4123037-1 |D s |
689 | 0 | 2 | |a Bayes-Verfahren |0 (DE-588)4204326-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-15012-5 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-84150-4 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511791277 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
912 | |a ZDB-20-CBO | ||
966 | e | |u https://doi.org/10.1017/CBO9780511791277 |l DE-12 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511791277 |l DE-92 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1805069243070283776 |
---|---|
adam_text | |
any_adam_object | |
author | Gregory, P. C. 1941- |
author_facet | Gregory, P. C. 1941- |
author_role | aut |
author_sort | Gregory, P. C. 1941- |
author_variant | p c g pc pcg |
building | Verbundindex |
bvnumber | BV043944230 |
classification_rvk | SK 830 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511791277 (OCoLC)859644240 (DE-599)BVBBV043944230 |
dewey-full | 519.5/42 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.5/42 |
dewey-search | 519.5/42 |
dewey-sort | 3519.5 242 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511791277 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000zc 4500</leader><controlfield tag="001">BV043944230</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2005 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511791277</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-79127-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511791277</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511791277</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)859644240</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043944230</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5/42</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 830</subfield><subfield code="0">(DE-625)143259:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gregory, P. C.</subfield><subfield code="d">1941-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bayesian logical data analysis for the physical sciences</subfield><subfield code="b">a comparative approach with Mathematica support</subfield><subfield code="c">P.C. Gregory</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2005</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xvii, 468 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Bayesian inference provides a simple and unified approach to data analysis, allowing experimenters to assign probabilities to competing hypotheses of interest, on the basis of the current state of knowledge. By incorporating relevant prior information, it can sometimes improve model parameter estimates by many orders of magnitude. This book provides a clear exposition of the underlying concepts with many worked examples and problem sets. It also discusses implementation, including an introduction to Markov chain Monte-Carlo integration and linear and nonlinear model fitting. Particularly extensive coverage of spectral analysis (detecting and measuring periodic signals) includes a self-contained introduction to Fourier and discrete Fourier methods. There is a chapter devoted to Bayesian inference with Poisson sampling, and three chapters on frequentist methods help to bridge the gap between the frequentist and Bayesian approaches. Supporting Mathematica notebooks with solutions to selected problems, additional worked examples, and a Mathematica tutorial are available at www.cambridge.org/9780521150125</subfield></datafield><datafield tag="630" ind1="0" ind2="4"><subfield code="a">Mathematica (Computer file)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bayesian statistical decision theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physical sciences / Statistical methods</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bayes-Verfahren</subfield><subfield code="0">(DE-588)4204326-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Physik</subfield><subfield code="0">(DE-588)4045956-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Physik</subfield><subfield code="0">(DE-588)4045956-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Bayes-Verfahren</subfield><subfield code="0">(DE-588)4204326-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-15012-5</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-84150-4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511791277</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511791277</subfield><subfield code="l">DE-12</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511791277</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043944230 |
illustrated | Not Illustrated |
indexdate | 2024-07-20T04:02:56Z |
institution | BVB |
isbn | 9780511791277 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029353201 |
oclc_num | 859644240 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xvii, 468 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2005 |
publishDateSearch | 2005 |
publishDateSort | 2005 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Gregory, P. C. 1941- Verfasser aut Bayesian logical data analysis for the physical sciences a comparative approach with Mathematica support P.C. Gregory Cambridge Cambridge University Press 2005 1 online resource (xvii, 468 pages) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 05 Oct 2015) Bayesian inference provides a simple and unified approach to data analysis, allowing experimenters to assign probabilities to competing hypotheses of interest, on the basis of the current state of knowledge. By incorporating relevant prior information, it can sometimes improve model parameter estimates by many orders of magnitude. This book provides a clear exposition of the underlying concepts with many worked examples and problem sets. It also discusses implementation, including an introduction to Markov chain Monte-Carlo integration and linear and nonlinear model fitting. Particularly extensive coverage of spectral analysis (detecting and measuring periodic signals) includes a self-contained introduction to Fourier and discrete Fourier methods. There is a chapter devoted to Bayesian inference with Poisson sampling, and three chapters on frequentist methods help to bridge the gap between the frequentist and Bayesian approaches. Supporting Mathematica notebooks with solutions to selected problems, additional worked examples, and a Mathematica tutorial are available at www.cambridge.org/9780521150125 Mathematica (Computer file) Bayesian statistical decision theory Physical sciences / Statistical methods Bayes-Verfahren (DE-588)4204326-8 gnd rswk-swf Datenanalyse (DE-588)4123037-1 gnd rswk-swf Physik (DE-588)4045956-1 gnd rswk-swf Physik (DE-588)4045956-1 s Datenanalyse (DE-588)4123037-1 s Bayes-Verfahren (DE-588)4204326-8 s 1\p DE-604 Erscheint auch als Druckausgabe 978-0-521-15012-5 Erscheint auch als Druckausgabe 978-0-521-84150-4 https://doi.org/10.1017/CBO9780511791277 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Gregory, P. C. 1941- Bayesian logical data analysis for the physical sciences a comparative approach with Mathematica support Mathematica (Computer file) Bayesian statistical decision theory Physical sciences / Statistical methods Bayes-Verfahren (DE-588)4204326-8 gnd Datenanalyse (DE-588)4123037-1 gnd Physik (DE-588)4045956-1 gnd |
subject_GND | (DE-588)4204326-8 (DE-588)4123037-1 (DE-588)4045956-1 |
title | Bayesian logical data analysis for the physical sciences a comparative approach with Mathematica support |
title_auth | Bayesian logical data analysis for the physical sciences a comparative approach with Mathematica support |
title_exact_search | Bayesian logical data analysis for the physical sciences a comparative approach with Mathematica support |
title_full | Bayesian logical data analysis for the physical sciences a comparative approach with Mathematica support P.C. Gregory |
title_fullStr | Bayesian logical data analysis for the physical sciences a comparative approach with Mathematica support P.C. Gregory |
title_full_unstemmed | Bayesian logical data analysis for the physical sciences a comparative approach with Mathematica support P.C. Gregory |
title_short | Bayesian logical data analysis for the physical sciences |
title_sort | bayesian logical data analysis for the physical sciences a comparative approach with mathematica support |
title_sub | a comparative approach with Mathematica support |
topic | Mathematica (Computer file) Bayesian statistical decision theory Physical sciences / Statistical methods Bayes-Verfahren (DE-588)4204326-8 gnd Datenanalyse (DE-588)4123037-1 gnd Physik (DE-588)4045956-1 gnd |
topic_facet | Mathematica (Computer file) Bayesian statistical decision theory Physical sciences / Statistical methods Bayes-Verfahren Datenanalyse Physik |
url | https://doi.org/10.1017/CBO9780511791277 |
work_keys_str_mv | AT gregorypc bayesianlogicaldataanalysisforthephysicalsciencesacomparativeapproachwithmathematicasupport |