Modeling count data:
This entry-level text offers clear and concise guidelines on how to select, construct, interpret, and evaluate count data. Written for researchers with little or no background in advanced statistics, the book presents treatments of all major models using numerous tables, insets, and detailed modelin...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY, USA
Cambridge University Press
2014
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBG01 Volltext |
Zusammenfassung: | This entry-level text offers clear and concise guidelines on how to select, construct, interpret, and evaluate count data. Written for researchers with little or no background in advanced statistics, the book presents treatments of all major models using numerous tables, insets, and detailed modeling suggestions. It begins by demonstrating the fundamentals of modeling count data, including a thorough presentation of the Poisson model. It then works up to an analysis of the problem of overdispersion and of the negative binomial model, and finally to the many variations that can be made to the base count models. Examples in Stata, R, and SAS code enable readers to adapt models for their own purposes, making the text an ideal resource for researchers working in health, ecology, econometrics, transportation, and other fields |
Beschreibung: | 1 Online-Ressource (xv, 283 Seiten) |
ISBN: | 9781139236065 |
DOI: | 10.1017/CBO9781139236065 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043944144 | ||
003 | DE-604 | ||
005 | 20240229 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2014 |||| o||u| ||||||eng d | ||
020 | |a 9781139236065 |c Online |9 978-1-139-23606-5 | ||
024 | 7 | |a 10.1017/CBO9781139236065 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781139236065 | ||
035 | |a (OCoLC)907964237 | ||
035 | |a (DE-599)BVBBV043944144 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-473 | ||
082 | 0 | |a 519.5/35 |2 23 | |
084 | |a QH 230 |0 (DE-625)141545: |2 rvk | ||
100 | 1 | |a Hilbe, Joseph M. |d 1944-2017 |e Verfasser |0 (DE-588)128751851 |4 aut | |
245 | 1 | 0 | |a Modeling count data |c Joseph M. Hilbe (Arizona State University and Jet Propulsion Laboratory, California Institute of Technology) |
264 | 1 | |a New York, NY, USA |b Cambridge University Press |c 2014 | |
300 | |a 1 Online-Ressource (xv, 283 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
505 | 8 | |a Machine generated contents note: Preface; 1. Varieties of count data; 2. Poisson regression; 3. Testing overdispersion; 4. Assessment of fit; 5. Negative binomial regression; 6. Poisson inverse Gaussian regression; 7. Problems with zeros; 8. Modeling under-dispersed count data - generalized Poisson; 9. Complex data: more advanced models; Appendix A: SAS code; References; Index | |
520 | |a This entry-level text offers clear and concise guidelines on how to select, construct, interpret, and evaluate count data. Written for researchers with little or no background in advanced statistics, the book presents treatments of all major models using numerous tables, insets, and detailed modeling suggestions. It begins by demonstrating the fundamentals of modeling count data, including a thorough presentation of the Poisson model. It then works up to an analysis of the problem of overdispersion and of the negative binomial model, and finally to the many variations that can be made to the base count models. Examples in Stata, R, and SAS code enable readers to adapt models for their own purposes, making the text an ideal resource for researchers working in health, ecology, econometrics, transportation, and other fields | ||
650 | 4 | |a Statistik | |
650 | 4 | |a Multivariate analysis | |
650 | 4 | |a Statistics | |
650 | 4 | |a Linear models (Statistics) | |
650 | 0 | 7 | |a Datenanalyse |0 (DE-588)4123037-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Zähldaten |0 (DE-588)4588029-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Zähldaten |0 (DE-588)4588029-3 |D s |
689 | 0 | 1 | |a Datenanalyse |0 (DE-588)4123037-1 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe, Hardcover |z 978-1-107-02833-3 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe, Paperback |z 978-1-107-61125-2 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781139236065 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029353115 | ||
966 | e | |u https://doi.org/10.1017/CBO9781139236065 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781139236065 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781139236065 |l UBG01 |p ZDB-20-CBO |q UBG_PDA_CBO_Kauf23 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176888697978880 |
---|---|
any_adam_object | |
author | Hilbe, Joseph M. 1944-2017 |
author_GND | (DE-588)128751851 |
author_facet | Hilbe, Joseph M. 1944-2017 |
author_role | aut |
author_sort | Hilbe, Joseph M. 1944-2017 |
author_variant | j m h jm jmh |
building | Verbundindex |
bvnumber | BV043944144 |
classification_rvk | QH 230 |
collection | ZDB-20-CBO |
contents | Machine generated contents note: Preface; 1. Varieties of count data; 2. Poisson regression; 3. Testing overdispersion; 4. Assessment of fit; 5. Negative binomial regression; 6. Poisson inverse Gaussian regression; 7. Problems with zeros; 8. Modeling under-dispersed count data - generalized Poisson; 9. Complex data: more advanced models; Appendix A: SAS code; References; Index |
ctrlnum | (ZDB-20-CBO)CR9781139236065 (OCoLC)907964237 (DE-599)BVBBV043944144 |
dewey-full | 519.5/35 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.5/35 |
dewey-search | 519.5/35 |
dewey-sort | 3519.5 235 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik Wirtschaftswissenschaften |
doi_str_mv | 10.1017/CBO9781139236065 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03295nmm a2200517zc 4500</leader><controlfield tag="001">BV043944144</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240229 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2014 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139236065</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-139-23606-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781139236065</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781139236065</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)907964237</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043944144</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-473</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5/35</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 230</subfield><subfield code="0">(DE-625)141545:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hilbe, Joseph M.</subfield><subfield code="d">1944-2017</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)128751851</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modeling count data</subfield><subfield code="c">Joseph M. Hilbe (Arizona State University and Jet Propulsion Laboratory, California Institute of Technology)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY, USA</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xv, 283 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Machine generated contents note: Preface; 1. Varieties of count data; 2. Poisson regression; 3. Testing overdispersion; 4. Assessment of fit; 5. Negative binomial regression; 6. Poisson inverse Gaussian regression; 7. Problems with zeros; 8. Modeling under-dispersed count data - generalized Poisson; 9. Complex data: more advanced models; Appendix A: SAS code; References; Index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This entry-level text offers clear and concise guidelines on how to select, construct, interpret, and evaluate count data. Written for researchers with little or no background in advanced statistics, the book presents treatments of all major models using numerous tables, insets, and detailed modeling suggestions. It begins by demonstrating the fundamentals of modeling count data, including a thorough presentation of the Poisson model. It then works up to an analysis of the problem of overdispersion and of the negative binomial model, and finally to the many variations that can be made to the base count models. Examples in Stata, R, and SAS code enable readers to adapt models for their own purposes, making the text an ideal resource for researchers working in health, ecology, econometrics, transportation, and other fields</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multivariate analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear models (Statistics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zähldaten</subfield><subfield code="0">(DE-588)4588029-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Zähldaten</subfield><subfield code="0">(DE-588)4588029-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe, Hardcover</subfield><subfield code="z">978-1-107-02833-3</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe, Paperback</subfield><subfield code="z">978-1-107-61125-2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781139236065</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029353115</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139236065</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139236065</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139236065</subfield><subfield code="l">UBG01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBG_PDA_CBO_Kauf23</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043944144 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:20Z |
institution | BVB |
isbn | 9781139236065 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029353115 |
oclc_num | 907964237 |
open_access_boolean | |
owner | DE-12 DE-92 DE-473 DE-BY-UBG |
owner_facet | DE-12 DE-92 DE-473 DE-BY-UBG |
physical | 1 Online-Ressource (xv, 283 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBG_PDA_CBO_Kauf23 |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Hilbe, Joseph M. 1944-2017 Verfasser (DE-588)128751851 aut Modeling count data Joseph M. Hilbe (Arizona State University and Jet Propulsion Laboratory, California Institute of Technology) New York, NY, USA Cambridge University Press 2014 1 Online-Ressource (xv, 283 Seiten) txt rdacontent c rdamedia cr rdacarrier Machine generated contents note: Preface; 1. Varieties of count data; 2. Poisson regression; 3. Testing overdispersion; 4. Assessment of fit; 5. Negative binomial regression; 6. Poisson inverse Gaussian regression; 7. Problems with zeros; 8. Modeling under-dispersed count data - generalized Poisson; 9. Complex data: more advanced models; Appendix A: SAS code; References; Index This entry-level text offers clear and concise guidelines on how to select, construct, interpret, and evaluate count data. Written for researchers with little or no background in advanced statistics, the book presents treatments of all major models using numerous tables, insets, and detailed modeling suggestions. It begins by demonstrating the fundamentals of modeling count data, including a thorough presentation of the Poisson model. It then works up to an analysis of the problem of overdispersion and of the negative binomial model, and finally to the many variations that can be made to the base count models. Examples in Stata, R, and SAS code enable readers to adapt models for their own purposes, making the text an ideal resource for researchers working in health, ecology, econometrics, transportation, and other fields Statistik Multivariate analysis Statistics Linear models (Statistics) Datenanalyse (DE-588)4123037-1 gnd rswk-swf Zähldaten (DE-588)4588029-3 gnd rswk-swf Zähldaten (DE-588)4588029-3 s Datenanalyse (DE-588)4123037-1 s DE-604 Erscheint auch als Druckausgabe, Hardcover 978-1-107-02833-3 Erscheint auch als Druckausgabe, Paperback 978-1-107-61125-2 https://doi.org/10.1017/CBO9781139236065 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Hilbe, Joseph M. 1944-2017 Modeling count data Machine generated contents note: Preface; 1. Varieties of count data; 2. Poisson regression; 3. Testing overdispersion; 4. Assessment of fit; 5. Negative binomial regression; 6. Poisson inverse Gaussian regression; 7. Problems with zeros; 8. Modeling under-dispersed count data - generalized Poisson; 9. Complex data: more advanced models; Appendix A: SAS code; References; Index Statistik Multivariate analysis Statistics Linear models (Statistics) Datenanalyse (DE-588)4123037-1 gnd Zähldaten (DE-588)4588029-3 gnd |
subject_GND | (DE-588)4123037-1 (DE-588)4588029-3 |
title | Modeling count data |
title_auth | Modeling count data |
title_exact_search | Modeling count data |
title_full | Modeling count data Joseph M. Hilbe (Arizona State University and Jet Propulsion Laboratory, California Institute of Technology) |
title_fullStr | Modeling count data Joseph M. Hilbe (Arizona State University and Jet Propulsion Laboratory, California Institute of Technology) |
title_full_unstemmed | Modeling count data Joseph M. Hilbe (Arizona State University and Jet Propulsion Laboratory, California Institute of Technology) |
title_short | Modeling count data |
title_sort | modeling count data |
topic | Statistik Multivariate analysis Statistics Linear models (Statistics) Datenanalyse (DE-588)4123037-1 gnd Zähldaten (DE-588)4588029-3 gnd |
topic_facet | Statistik Multivariate analysis Statistics Linear models (Statistics) Datenanalyse Zähldaten |
url | https://doi.org/10.1017/CBO9781139236065 |
work_keys_str_mv | AT hilbejosephm modelingcountdata |