P, NP, and NP-completeness: the basics of computational complexity
The focus of this book is the P versus NP Question and the theory of NP-completeness. It also provides adequate preliminaries regarding computational problems and computational models. The P versus NP Question asks whether or not finding solutions is harder than checking the correctness of solutions...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2010
|
Schlagworte: | |
Online-Zugang: | DE-12 DE-92 DE-473 Volltext |
Zusammenfassung: | The focus of this book is the P versus NP Question and the theory of NP-completeness. It also provides adequate preliminaries regarding computational problems and computational models. The P versus NP Question asks whether or not finding solutions is harder than checking the correctness of solutions. An alternative formulation asks whether or not discovering proofs is harder than verifying their correctness. It is widely believed that the answer to these equivalent formulations is positive, and this is captured by saying that P is different from NP. Although the P versus NP Question remains unresolved, the theory of NP-completeness offers evidence for the intractability of specific problems in NP by showing that they are universal for the entire class. Amazingly enough, NP-complete problems exist, and furthermore hundreds of natural computational problems arising in many different areas of mathematics and science are NP-complete |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xxix, 184 pages) |
ISBN: | 9780511761355 |
DOI: | 10.1017/CBO9780511761355 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043943967 | ||
003 | DE-604 | ||
005 | 20241015 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2010 |||| o||u| ||||||eng d | ||
020 | |a 9780511761355 |c Online |9 978-0-511-76135-5 | ||
024 | 7 | |a 10.1017/CBO9780511761355 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511761355 | ||
035 | |a (OCoLC)839036115 | ||
035 | |a (DE-599)BVBBV043943967 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-473 | ||
082 | 0 | |a 005.1 |2 22 | |
084 | |a ST 134 |0 (DE-625)143590: |2 rvk | ||
100 | 1 | |a Goldreich, Oded |e Verfasser |4 aut | |
245 | 1 | 0 | |a P, NP, and NP-completeness |b the basics of computational complexity |c Oded Goldreich |
246 | 1 | 3 | |a P, NP, & NP-Completeness |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2010 | |
300 | |a 1 online resource (xxix, 184 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a Machine generated contents note: 1. Computational tasks and models; 2. The P versus NP Question; 3. Polynomial-time reductions; 4. NP-completeness; 5. Three relatively advanced topics; Epilogue: a brief overview of complexity theory | |
520 | |a The focus of this book is the P versus NP Question and the theory of NP-completeness. It also provides adequate preliminaries regarding computational problems and computational models. The P versus NP Question asks whether or not finding solutions is harder than checking the correctness of solutions. An alternative formulation asks whether or not discovering proofs is harder than verifying their correctness. It is widely believed that the answer to these equivalent formulations is positive, and this is captured by saying that P is different from NP. Although the P versus NP Question remains unresolved, the theory of NP-completeness offers evidence for the intractability of specific problems in NP by showing that they are universal for the entire class. Amazingly enough, NP-complete problems exist, and furthermore hundreds of natural computational problems arising in many different areas of mathematics and science are NP-complete | ||
650 | 4 | |a Computational complexity | |
650 | 4 | |a Computer algorithms | |
650 | 4 | |a Approximation theory | |
650 | 4 | |a Polynomials | |
650 | 0 | 7 | |a Berechnungstheorie |0 (DE-588)4005581-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Komplexitätstheorie |0 (DE-588)4120591-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a NP-vollständiges Problem |0 (DE-588)4138229-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a NP-vollständiges Problem |0 (DE-588)4138229-8 |D s |
689 | 0 | 1 | |a Berechnungstheorie |0 (DE-588)4005581-4 |D s |
689 | 0 | 2 | |a Komplexitätstheorie |0 (DE-588)4120591-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-12254-2 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-19248-4 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511761355 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
912 | |a ZDB-20-CBO | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-029352938 | |
966 | e | |u https://doi.org/10.1017/CBO9780511761355 |l DE-12 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511761355 |l DE-92 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511761355 |l DE-473 |p ZDB-20-CBO |q UBG_Einzelkauf |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1812988831076450304 |
---|---|
adam_text | |
any_adam_object | |
author | Goldreich, Oded |
author_facet | Goldreich, Oded |
author_role | aut |
author_sort | Goldreich, Oded |
author_variant | o g og |
building | Verbundindex |
bvnumber | BV043943967 |
classification_rvk | ST 134 |
collection | ZDB-20-CBO |
contents | Machine generated contents note: 1. Computational tasks and models; 2. The P versus NP Question; 3. Polynomial-time reductions; 4. NP-completeness; 5. Three relatively advanced topics; Epilogue: a brief overview of complexity theory |
ctrlnum | (ZDB-20-CBO)CR9780511761355 (OCoLC)839036115 (DE-599)BVBBV043943967 |
dewey-full | 005.1 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 005 - Computer programming, programs, data, security |
dewey-raw | 005.1 |
dewey-search | 005.1 |
dewey-sort | 15.1 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
doi_str_mv | 10.1017/CBO9780511761355 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000zc 4500</leader><controlfield tag="001">BV043943967</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20241015</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2010 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511761355</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-76135-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511761355</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511761355</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)839036115</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043943967</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-473</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">005.1</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 134</subfield><subfield code="0">(DE-625)143590:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Goldreich, Oded</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">P, NP, and NP-completeness</subfield><subfield code="b">the basics of computational complexity</subfield><subfield code="c">Oded Goldreich</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">P, NP, & NP-Completeness</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xxix, 184 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Machine generated contents note: 1. Computational tasks and models; 2. The P versus NP Question; 3. Polynomial-time reductions; 4. NP-completeness; 5. Three relatively advanced topics; Epilogue: a brief overview of complexity theory</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The focus of this book is the P versus NP Question and the theory of NP-completeness. It also provides adequate preliminaries regarding computational problems and computational models. The P versus NP Question asks whether or not finding solutions is harder than checking the correctness of solutions. An alternative formulation asks whether or not discovering proofs is harder than verifying their correctness. It is widely believed that the answer to these equivalent formulations is positive, and this is captured by saying that P is different from NP. Although the P versus NP Question remains unresolved, the theory of NP-completeness offers evidence for the intractability of specific problems in NP by showing that they are universal for the entire class. Amazingly enough, NP-complete problems exist, and furthermore hundreds of natural computational problems arising in many different areas of mathematics and science are NP-complete</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Approximation theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polynomials</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Berechnungstheorie</subfield><subfield code="0">(DE-588)4005581-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Komplexitätstheorie</subfield><subfield code="0">(DE-588)4120591-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">NP-vollständiges Problem</subfield><subfield code="0">(DE-588)4138229-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">NP-vollständiges Problem</subfield><subfield code="0">(DE-588)4138229-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Berechnungstheorie</subfield><subfield code="0">(DE-588)4005581-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Komplexitätstheorie</subfield><subfield code="0">(DE-588)4120591-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-12254-2</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-19248-4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511761355</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029352938</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511761355</subfield><subfield code="l">DE-12</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511761355</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511761355</subfield><subfield code="l">DE-473</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBG_Einzelkauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043943967 |
illustrated | Not Illustrated |
indexdate | 2024-10-15T14:01:23Z |
institution | BVB |
isbn | 9780511761355 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029352938 |
oclc_num | 839036115 |
open_access_boolean | |
owner | DE-12 DE-92 DE-473 DE-BY-UBG |
owner_facet | DE-12 DE-92 DE-473 DE-BY-UBG |
physical | 1 online resource (xxix, 184 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBG_Einzelkauf |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Goldreich, Oded Verfasser aut P, NP, and NP-completeness the basics of computational complexity Oded Goldreich P, NP, & NP-Completeness Cambridge Cambridge University Press 2010 1 online resource (xxix, 184 pages) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 05 Oct 2015) Machine generated contents note: 1. Computational tasks and models; 2. The P versus NP Question; 3. Polynomial-time reductions; 4. NP-completeness; 5. Three relatively advanced topics; Epilogue: a brief overview of complexity theory The focus of this book is the P versus NP Question and the theory of NP-completeness. It also provides adequate preliminaries regarding computational problems and computational models. The P versus NP Question asks whether or not finding solutions is harder than checking the correctness of solutions. An alternative formulation asks whether or not discovering proofs is harder than verifying their correctness. It is widely believed that the answer to these equivalent formulations is positive, and this is captured by saying that P is different from NP. Although the P versus NP Question remains unresolved, the theory of NP-completeness offers evidence for the intractability of specific problems in NP by showing that they are universal for the entire class. Amazingly enough, NP-complete problems exist, and furthermore hundreds of natural computational problems arising in many different areas of mathematics and science are NP-complete Computational complexity Computer algorithms Approximation theory Polynomials Berechnungstheorie (DE-588)4005581-4 gnd rswk-swf Komplexitätstheorie (DE-588)4120591-1 gnd rswk-swf NP-vollständiges Problem (DE-588)4138229-8 gnd rswk-swf NP-vollständiges Problem (DE-588)4138229-8 s Berechnungstheorie (DE-588)4005581-4 s Komplexitätstheorie (DE-588)4120591-1 s 1\p DE-604 Erscheint auch als Druckausgabe 978-0-521-12254-2 Erscheint auch als Druckausgabe 978-0-521-19248-4 https://doi.org/10.1017/CBO9780511761355 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Goldreich, Oded P, NP, and NP-completeness the basics of computational complexity Machine generated contents note: 1. Computational tasks and models; 2. The P versus NP Question; 3. Polynomial-time reductions; 4. NP-completeness; 5. Three relatively advanced topics; Epilogue: a brief overview of complexity theory Computational complexity Computer algorithms Approximation theory Polynomials Berechnungstheorie (DE-588)4005581-4 gnd Komplexitätstheorie (DE-588)4120591-1 gnd NP-vollständiges Problem (DE-588)4138229-8 gnd |
subject_GND | (DE-588)4005581-4 (DE-588)4120591-1 (DE-588)4138229-8 |
title | P, NP, and NP-completeness the basics of computational complexity |
title_alt | P, NP, & NP-Completeness |
title_auth | P, NP, and NP-completeness the basics of computational complexity |
title_exact_search | P, NP, and NP-completeness the basics of computational complexity |
title_full | P, NP, and NP-completeness the basics of computational complexity Oded Goldreich |
title_fullStr | P, NP, and NP-completeness the basics of computational complexity Oded Goldreich |
title_full_unstemmed | P, NP, and NP-completeness the basics of computational complexity Oded Goldreich |
title_short | P, NP, and NP-completeness |
title_sort | p np and np completeness the basics of computational complexity |
title_sub | the basics of computational complexity |
topic | Computational complexity Computer algorithms Approximation theory Polynomials Berechnungstheorie (DE-588)4005581-4 gnd Komplexitätstheorie (DE-588)4120591-1 gnd NP-vollständiges Problem (DE-588)4138229-8 gnd |
topic_facet | Computational complexity Computer algorithms Approximation theory Polynomials Berechnungstheorie Komplexitätstheorie NP-vollständiges Problem |
url | https://doi.org/10.1017/CBO9780511761355 |
work_keys_str_mv | AT goldreichoded pnpandnpcompletenessthebasicsofcomputationalcomplexity AT goldreichoded pnpnpcompleteness |