Methods for computational gene prediction:
Inferring the precise locations and splicing patterns of genes in DNA is a difficult but important task, with broad applications to biomedicine. The mathematical and statistical techniques that have been applied to this problem are surveyed and organized into a logical framework based on the theory...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2007
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | Inferring the precise locations and splicing patterns of genes in DNA is a difficult but important task, with broad applications to biomedicine. The mathematical and statistical techniques that have been applied to this problem are surveyed and organized into a logical framework based on the theory of parsing. Both established approaches and methods at the forefront of current research are discussed. Numerous case studies of existing software systems are provided, in addition to detailed examples that work through the actual implementation of effective gene-predictors using hidden Markov models and other machine-learning techniques. Background material on probability theory, discrete mathematics, computer science, and molecular biology is provided, making the book accessible to students and researchers from across the life and computational sciences. This book is ideal for use in a first course in bioinformatics at graduate or advanced undergraduate level, and for anyone wanting to keep pace with this rapidly-advancing field |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xvii, 430 pages) |
ISBN: | 9780511811135 |
DOI: | 10.1017/CBO9780511811135 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043943817 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2007 |||| o||u| ||||||eng d | ||
020 | |a 9780511811135 |c Online |9 978-0-511-81113-5 | ||
024 | 7 | |a 10.1017/CBO9780511811135 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511811135 | ||
035 | |a (OCoLC)859643049 | ||
035 | |a (DE-599)BVBBV043943817 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 572.860285 |2 22 | |
084 | |a WC 7700 |0 (DE-625)148144: |2 rvk | ||
084 | |a WG 1500 |0 (DE-625)148492: |2 rvk | ||
100 | 1 | |a Majoros, William H. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Methods for computational gene prediction |c William H. Majoros |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2007 | |
300 | |a 1 online resource (xvii, 430 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a 1. Introduction -- 2. Mathematical preliminaries -- 3. Overview of gene prediction -- 4. Gene finder evaluation -- 5. A toy Exon finder -- 6. Hidden Markov models -- 7. Signal and content sensors -- 8. Generalized hidden Markov models -- 9. Comparative gene finding -- 10. Machine Learning methods -- 11. Tips and tricks -- 12. Advanced topics | |
520 | |a Inferring the precise locations and splicing patterns of genes in DNA is a difficult but important task, with broad applications to biomedicine. The mathematical and statistical techniques that have been applied to this problem are surveyed and organized into a logical framework based on the theory of parsing. Both established approaches and methods at the forefront of current research are discussed. Numerous case studies of existing software systems are provided, in addition to detailed examples that work through the actual implementation of effective gene-predictors using hidden Markov models and other machine-learning techniques. Background material on probability theory, discrete mathematics, computer science, and molecular biology is provided, making the book accessible to students and researchers from across the life and computational sciences. This book is ideal for use in a first course in bioinformatics at graduate or advanced undergraduate level, and for anyone wanting to keep pace with this rapidly-advancing field | ||
650 | 4 | |a Datenverarbeitung | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Genomics / Data processing | |
650 | 4 | |a Bioinformatics | |
650 | 4 | |a Molecular genetics / Data processing | |
650 | 4 | |a Molecular genetics / Data processing / Case studies | |
650 | 4 | |a Molecular genetics / Mathematics | |
650 | 4 | |a Molecular genetics / Mathematics / Case studies | |
650 | 0 | 7 | |a Bioinformatik |0 (DE-588)4611085-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Genanalyse |0 (DE-588)4200230-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Molekulare Bioinformatik |0 (DE-588)4531334-9 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4522595-3 |a Fallstudiensammlung |2 gnd-content | |
689 | 0 | 0 | |a Genanalyse |0 (DE-588)4200230-8 |D s |
689 | 0 | 1 | |a Bioinformatik |0 (DE-588)4611085-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Molekulare Bioinformatik |0 (DE-588)4531334-9 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-70694-0 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-87751-0 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511811135 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029352788 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511811135 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511811135 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176888061493248 |
---|---|
any_adam_object | |
author | Majoros, William H. |
author_facet | Majoros, William H. |
author_role | aut |
author_sort | Majoros, William H. |
author_variant | w h m wh whm |
building | Verbundindex |
bvnumber | BV043943817 |
classification_rvk | WC 7700 WG 1500 |
collection | ZDB-20-CBO |
contents | 1. Introduction -- 2. Mathematical preliminaries -- 3. Overview of gene prediction -- 4. Gene finder evaluation -- 5. A toy Exon finder -- 6. Hidden Markov models -- 7. Signal and content sensors -- 8. Generalized hidden Markov models -- 9. Comparative gene finding -- 10. Machine Learning methods -- 11. Tips and tricks -- 12. Advanced topics |
ctrlnum | (ZDB-20-CBO)CR9780511811135 (OCoLC)859643049 (DE-599)BVBBV043943817 |
dewey-full | 572.860285 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 572 - Biochemistry |
dewey-raw | 572.860285 |
dewey-search | 572.860285 |
dewey-sort | 3572.860285 |
dewey-tens | 570 - Biology |
discipline | Biologie |
doi_str_mv | 10.1017/CBO9780511811135 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04001nmm a2200649zc 4500</leader><controlfield tag="001">BV043943817</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2007 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511811135</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-81113-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511811135</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511811135</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)859643049</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043943817</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">572.860285</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WC 7700</subfield><subfield code="0">(DE-625)148144:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WG 1500</subfield><subfield code="0">(DE-625)148492:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Majoros, William H.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Methods for computational gene prediction</subfield><subfield code="c">William H. Majoros</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xvii, 430 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1. Introduction -- 2. Mathematical preliminaries -- 3. Overview of gene prediction -- 4. Gene finder evaluation -- 5. A toy Exon finder -- 6. Hidden Markov models -- 7. Signal and content sensors -- 8. Generalized hidden Markov models -- 9. Comparative gene finding -- 10. Machine Learning methods -- 11. Tips and tricks -- 12. Advanced topics</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Inferring the precise locations and splicing patterns of genes in DNA is a difficult but important task, with broad applications to biomedicine. The mathematical and statistical techniques that have been applied to this problem are surveyed and organized into a logical framework based on the theory of parsing. Both established approaches and methods at the forefront of current research are discussed. Numerous case studies of existing software systems are provided, in addition to detailed examples that work through the actual implementation of effective gene-predictors using hidden Markov models and other machine-learning techniques. Background material on probability theory, discrete mathematics, computer science, and molecular biology is provided, making the book accessible to students and researchers from across the life and computational sciences. This book is ideal for use in a first course in bioinformatics at graduate or advanced undergraduate level, and for anyone wanting to keep pace with this rapidly-advancing field</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Datenverarbeitung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Genomics / Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bioinformatics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Molecular genetics / Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Molecular genetics / Data processing / Case studies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Molecular genetics / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Molecular genetics / Mathematics / Case studies</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bioinformatik</subfield><subfield code="0">(DE-588)4611085-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Genanalyse</subfield><subfield code="0">(DE-588)4200230-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Molekulare Bioinformatik</subfield><subfield code="0">(DE-588)4531334-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4522595-3</subfield><subfield code="a">Fallstudiensammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Genanalyse</subfield><subfield code="0">(DE-588)4200230-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Bioinformatik</subfield><subfield code="0">(DE-588)4611085-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Molekulare Bioinformatik</subfield><subfield code="0">(DE-588)4531334-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-70694-0</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-87751-0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511811135</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029352788</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511811135</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511811135</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | (DE-588)4522595-3 Fallstudiensammlung gnd-content |
genre_facet | Fallstudiensammlung |
id | DE-604.BV043943817 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:20Z |
institution | BVB |
isbn | 9780511811135 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029352788 |
oclc_num | 859643049 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xvii, 430 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Majoros, William H. Verfasser aut Methods for computational gene prediction William H. Majoros Cambridge Cambridge University Press 2007 1 online resource (xvii, 430 pages) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 05 Oct 2015) 1. Introduction -- 2. Mathematical preliminaries -- 3. Overview of gene prediction -- 4. Gene finder evaluation -- 5. A toy Exon finder -- 6. Hidden Markov models -- 7. Signal and content sensors -- 8. Generalized hidden Markov models -- 9. Comparative gene finding -- 10. Machine Learning methods -- 11. Tips and tricks -- 12. Advanced topics Inferring the precise locations and splicing patterns of genes in DNA is a difficult but important task, with broad applications to biomedicine. The mathematical and statistical techniques that have been applied to this problem are surveyed and organized into a logical framework based on the theory of parsing. Both established approaches and methods at the forefront of current research are discussed. Numerous case studies of existing software systems are provided, in addition to detailed examples that work through the actual implementation of effective gene-predictors using hidden Markov models and other machine-learning techniques. Background material on probability theory, discrete mathematics, computer science, and molecular biology is provided, making the book accessible to students and researchers from across the life and computational sciences. This book is ideal for use in a first course in bioinformatics at graduate or advanced undergraduate level, and for anyone wanting to keep pace with this rapidly-advancing field Datenverarbeitung Mathematik Genomics / Data processing Bioinformatics Molecular genetics / Data processing Molecular genetics / Data processing / Case studies Molecular genetics / Mathematics Molecular genetics / Mathematics / Case studies Bioinformatik (DE-588)4611085-9 gnd rswk-swf Genanalyse (DE-588)4200230-8 gnd rswk-swf Molekulare Bioinformatik (DE-588)4531334-9 gnd rswk-swf (DE-588)4522595-3 Fallstudiensammlung gnd-content Genanalyse (DE-588)4200230-8 s Bioinformatik (DE-588)4611085-9 s 1\p DE-604 Molekulare Bioinformatik (DE-588)4531334-9 s 2\p DE-604 Erscheint auch als Druckausgabe 978-0-521-70694-0 Erscheint auch als Druckausgabe 978-0-521-87751-0 https://doi.org/10.1017/CBO9780511811135 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Majoros, William H. Methods for computational gene prediction 1. Introduction -- 2. Mathematical preliminaries -- 3. Overview of gene prediction -- 4. Gene finder evaluation -- 5. A toy Exon finder -- 6. Hidden Markov models -- 7. Signal and content sensors -- 8. Generalized hidden Markov models -- 9. Comparative gene finding -- 10. Machine Learning methods -- 11. Tips and tricks -- 12. Advanced topics Datenverarbeitung Mathematik Genomics / Data processing Bioinformatics Molecular genetics / Data processing Molecular genetics / Data processing / Case studies Molecular genetics / Mathematics Molecular genetics / Mathematics / Case studies Bioinformatik (DE-588)4611085-9 gnd Genanalyse (DE-588)4200230-8 gnd Molekulare Bioinformatik (DE-588)4531334-9 gnd |
subject_GND | (DE-588)4611085-9 (DE-588)4200230-8 (DE-588)4531334-9 (DE-588)4522595-3 |
title | Methods for computational gene prediction |
title_auth | Methods for computational gene prediction |
title_exact_search | Methods for computational gene prediction |
title_full | Methods for computational gene prediction William H. Majoros |
title_fullStr | Methods for computational gene prediction William H. Majoros |
title_full_unstemmed | Methods for computational gene prediction William H. Majoros |
title_short | Methods for computational gene prediction |
title_sort | methods for computational gene prediction |
topic | Datenverarbeitung Mathematik Genomics / Data processing Bioinformatics Molecular genetics / Data processing Molecular genetics / Data processing / Case studies Molecular genetics / Mathematics Molecular genetics / Mathematics / Case studies Bioinformatik (DE-588)4611085-9 gnd Genanalyse (DE-588)4200230-8 gnd Molekulare Bioinformatik (DE-588)4531334-9 gnd |
topic_facet | Datenverarbeitung Mathematik Genomics / Data processing Bioinformatics Molecular genetics / Data processing Molecular genetics / Data processing / Case studies Molecular genetics / Mathematics Molecular genetics / Mathematics / Case studies Bioinformatik Genanalyse Molekulare Bioinformatik Fallstudiensammlung |
url | https://doi.org/10.1017/CBO9780511811135 |
work_keys_str_mv | AT majoroswilliamh methodsforcomputationalgeneprediction |