Algebraic codes on lines, planes, and curves:
The past few years have witnessed significant developments in algebraic coding theory. This book provides an advanced treatment of the subject from an engineering perspective, covering the basic principles and their application in communications and signal processing. Emphasis is on codes defined on...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2008
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | The past few years have witnessed significant developments in algebraic coding theory. This book provides an advanced treatment of the subject from an engineering perspective, covering the basic principles and their application in communications and signal processing. Emphasis is on codes defined on the line, on the plane, and on curves, with the core ideas presented using commutative algebra and computational algebraic geometry made accessible using the Fourier transform. Starting with codes defined on a line, a background framework is established upon which the later chapters concerning codes on planes, and on curves, are developed. The decoding algorithms are developed using the standard engineering approach applied to those of Reed-Solomon codes, enabling them to be evaluated against practical applications. Integrating recent developments in the field into the classical treatment of algebraic coding, this is an invaluable resource for graduate students and researchers in telecommunications and applied mathematics |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xix, 543 pages) |
ISBN: | 9780511543401 |
DOI: | 10.1017/CBO9780511543401 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043943790 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2008 |||| o||u| ||||||eng d | ||
020 | |a 9780511543401 |c Online |9 978-0-511-54340-1 | ||
024 | 7 | |a 10.1017/CBO9780511543401 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511543401 | ||
035 | |a (OCoLC)967686756 | ||
035 | |a (DE-599)BVBBV043943790 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 621.38220151635 |2 22 | |
084 | |a SK 240 |0 (DE-625)143226: |2 rvk | ||
100 | 1 | |a Blahut, Richard E. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Algebraic codes on lines, planes, and curves |c Richard E. Blahut |
246 | 1 | 3 | |a Algebraic Codes on Lines, Planes, & Curves |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2008 | |
300 | |a 1 online resource (xix, 543 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a Sequences and the one-dimensional Fourier transform -- The Fourier transform and cyclic codes -- The many decoding algorithms for Reed-Solomon codes -- Within or beyond the packing radius -- Arrays and the two-dimensional Fourier transform -- The Fourier transform and bicyclic codes -- Arrays and the algebra of bivariate polynomials -- Computation of minimal bases -- Curves, surfaces, and vector spaces -- Codes on curves and surfaces -- Other representations of codes on curves -- The many decoding algorithms for codes on curves | |
520 | |a The past few years have witnessed significant developments in algebraic coding theory. This book provides an advanced treatment of the subject from an engineering perspective, covering the basic principles and their application in communications and signal processing. Emphasis is on codes defined on the line, on the plane, and on curves, with the core ideas presented using commutative algebra and computational algebraic geometry made accessible using the Fourier transform. Starting with codes defined on a line, a background framework is established upon which the later chapters concerning codes on planes, and on curves, are developed. The decoding algorithms are developed using the standard engineering approach applied to those of Reed-Solomon codes, enabling them to be evaluated against practical applications. Integrating recent developments in the field into the classical treatment of algebraic coding, this is an invaluable resource for graduate students and researchers in telecommunications and applied mathematics | ||
650 | 4 | |a Mathematik | |
650 | 4 | |a Signal processing / Mathematics | |
650 | 4 | |a Coding theory | |
650 | 4 | |a Geometry, Algebraic | |
650 | 0 | 7 | |a Codierungstheorie |0 (DE-588)4139405-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algebraische Codierung |0 (DE-588)4141834-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Fourier-Transformation |0 (DE-588)4018014-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Codierungstheorie |0 (DE-588)4139405-7 |D s |
689 | 0 | 1 | |a Algebraische Codierung |0 (DE-588)4141834-7 |D s |
689 | 0 | 2 | |a Fourier-Transformation |0 (DE-588)4018014-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-77194-8 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511543401 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029352761 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511543401 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511543401 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176888135942144 |
---|---|
any_adam_object | |
author | Blahut, Richard E. |
author_facet | Blahut, Richard E. |
author_role | aut |
author_sort | Blahut, Richard E. |
author_variant | r e b re reb |
building | Verbundindex |
bvnumber | BV043943790 |
classification_rvk | SK 240 |
collection | ZDB-20-CBO |
contents | Sequences and the one-dimensional Fourier transform -- The Fourier transform and cyclic codes -- The many decoding algorithms for Reed-Solomon codes -- Within or beyond the packing radius -- Arrays and the two-dimensional Fourier transform -- The Fourier transform and bicyclic codes -- Arrays and the algebra of bivariate polynomials -- Computation of minimal bases -- Curves, surfaces, and vector spaces -- Codes on curves and surfaces -- Other representations of codes on curves -- The many decoding algorithms for codes on curves |
ctrlnum | (ZDB-20-CBO)CR9780511543401 (OCoLC)967686756 (DE-599)BVBBV043943790 |
dewey-full | 621.38220151635 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.38220151635 |
dewey-search | 621.38220151635 |
dewey-sort | 3621.38220151635 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Mathematik Elektrotechnik / Elektronik / Nachrichtentechnik |
doi_str_mv | 10.1017/CBO9780511543401 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03750nmm a2200553zc 4500</leader><controlfield tag="001">BV043943790</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2008 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511543401</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-54340-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511543401</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511543401</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967686756</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043943790</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.38220151635</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 240</subfield><subfield code="0">(DE-625)143226:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Blahut, Richard E.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Algebraic codes on lines, planes, and curves</subfield><subfield code="c">Richard E. Blahut</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Algebraic Codes on Lines, Planes, & Curves</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xix, 543 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Sequences and the one-dimensional Fourier transform -- The Fourier transform and cyclic codes -- The many decoding algorithms for Reed-Solomon codes -- Within or beyond the packing radius -- Arrays and the two-dimensional Fourier transform -- The Fourier transform and bicyclic codes -- Arrays and the algebra of bivariate polynomials -- Computation of minimal bases -- Curves, surfaces, and vector spaces -- Codes on curves and surfaces -- Other representations of codes on curves -- The many decoding algorithms for codes on curves</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The past few years have witnessed significant developments in algebraic coding theory. This book provides an advanced treatment of the subject from an engineering perspective, covering the basic principles and their application in communications and signal processing. Emphasis is on codes defined on the line, on the plane, and on curves, with the core ideas presented using commutative algebra and computational algebraic geometry made accessible using the Fourier transform. Starting with codes defined on a line, a background framework is established upon which the later chapters concerning codes on planes, and on curves, are developed. The decoding algorithms are developed using the standard engineering approach applied to those of Reed-Solomon codes, enabling them to be evaluated against practical applications. Integrating recent developments in the field into the classical treatment of algebraic coding, this is an invaluable resource for graduate students and researchers in telecommunications and applied mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Signal processing / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coding theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Algebraic</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Codierungstheorie</subfield><subfield code="0">(DE-588)4139405-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Codierung</subfield><subfield code="0">(DE-588)4141834-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fourier-Transformation</subfield><subfield code="0">(DE-588)4018014-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Codierungstheorie</subfield><subfield code="0">(DE-588)4139405-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Algebraische Codierung</subfield><subfield code="0">(DE-588)4141834-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Fourier-Transformation</subfield><subfield code="0">(DE-588)4018014-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-77194-8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511543401</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029352761</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511543401</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511543401</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043943790 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:20Z |
institution | BVB |
isbn | 9780511543401 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029352761 |
oclc_num | 967686756 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xix, 543 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Blahut, Richard E. Verfasser aut Algebraic codes on lines, planes, and curves Richard E. Blahut Algebraic Codes on Lines, Planes, & Curves Cambridge Cambridge University Press 2008 1 online resource (xix, 543 pages) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 05 Oct 2015) Sequences and the one-dimensional Fourier transform -- The Fourier transform and cyclic codes -- The many decoding algorithms for Reed-Solomon codes -- Within or beyond the packing radius -- Arrays and the two-dimensional Fourier transform -- The Fourier transform and bicyclic codes -- Arrays and the algebra of bivariate polynomials -- Computation of minimal bases -- Curves, surfaces, and vector spaces -- Codes on curves and surfaces -- Other representations of codes on curves -- The many decoding algorithms for codes on curves The past few years have witnessed significant developments in algebraic coding theory. This book provides an advanced treatment of the subject from an engineering perspective, covering the basic principles and their application in communications and signal processing. Emphasis is on codes defined on the line, on the plane, and on curves, with the core ideas presented using commutative algebra and computational algebraic geometry made accessible using the Fourier transform. Starting with codes defined on a line, a background framework is established upon which the later chapters concerning codes on planes, and on curves, are developed. The decoding algorithms are developed using the standard engineering approach applied to those of Reed-Solomon codes, enabling them to be evaluated against practical applications. Integrating recent developments in the field into the classical treatment of algebraic coding, this is an invaluable resource for graduate students and researchers in telecommunications and applied mathematics Mathematik Signal processing / Mathematics Coding theory Geometry, Algebraic Codierungstheorie (DE-588)4139405-7 gnd rswk-swf Algebraische Codierung (DE-588)4141834-7 gnd rswk-swf Fourier-Transformation (DE-588)4018014-1 gnd rswk-swf Codierungstheorie (DE-588)4139405-7 s Algebraische Codierung (DE-588)4141834-7 s Fourier-Transformation (DE-588)4018014-1 s 1\p DE-604 Erscheint auch als Druckausgabe 978-0-521-77194-8 https://doi.org/10.1017/CBO9780511543401 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Blahut, Richard E. Algebraic codes on lines, planes, and curves Sequences and the one-dimensional Fourier transform -- The Fourier transform and cyclic codes -- The many decoding algorithms for Reed-Solomon codes -- Within or beyond the packing radius -- Arrays and the two-dimensional Fourier transform -- The Fourier transform and bicyclic codes -- Arrays and the algebra of bivariate polynomials -- Computation of minimal bases -- Curves, surfaces, and vector spaces -- Codes on curves and surfaces -- Other representations of codes on curves -- The many decoding algorithms for codes on curves Mathematik Signal processing / Mathematics Coding theory Geometry, Algebraic Codierungstheorie (DE-588)4139405-7 gnd Algebraische Codierung (DE-588)4141834-7 gnd Fourier-Transformation (DE-588)4018014-1 gnd |
subject_GND | (DE-588)4139405-7 (DE-588)4141834-7 (DE-588)4018014-1 |
title | Algebraic codes on lines, planes, and curves |
title_alt | Algebraic Codes on Lines, Planes, & Curves |
title_auth | Algebraic codes on lines, planes, and curves |
title_exact_search | Algebraic codes on lines, planes, and curves |
title_full | Algebraic codes on lines, planes, and curves Richard E. Blahut |
title_fullStr | Algebraic codes on lines, planes, and curves Richard E. Blahut |
title_full_unstemmed | Algebraic codes on lines, planes, and curves Richard E. Blahut |
title_short | Algebraic codes on lines, planes, and curves |
title_sort | algebraic codes on lines planes and curves |
topic | Mathematik Signal processing / Mathematics Coding theory Geometry, Algebraic Codierungstheorie (DE-588)4139405-7 gnd Algebraische Codierung (DE-588)4141834-7 gnd Fourier-Transformation (DE-588)4018014-1 gnd |
topic_facet | Mathematik Signal processing / Mathematics Coding theory Geometry, Algebraic Codierungstheorie Algebraische Codierung Fourier-Transformation |
url | https://doi.org/10.1017/CBO9780511543401 |
work_keys_str_mv | AT blahutricharde algebraiccodesonlinesplanesandcurves AT blahutricharde algebraiccodesonlinesplanescurves |