Curves and singularities: a geometrical introduction to singularity theory
The differential geometry of curves and surfaces in Euclidean space has fascinated mathematicians since the time of Newton. Here the authors cast the theory into a new light, that of singularity theory. This second edition has been thoroughly revised throughout and includes a multitude of new exerci...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1992
|
Ausgabe: | Second edition |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | The differential geometry of curves and surfaces in Euclidean space has fascinated mathematicians since the time of Newton. Here the authors cast the theory into a new light, that of singularity theory. This second edition has been thoroughly revised throughout and includes a multitude of new exercises and examples. A new final chapter has been added which covers recently developed techniques in the classification of functions of several variables, a subject central to many applications of singularity theory. Also in this second edition are new sections on the Morse lemma and the classification of plane curve singularities. The only prerequisites for students to follow this textbook are a familiarity with linear algebra and advanced calculus. Thus it will be invaluable for anyone who would like an introduction to modern singularity theory |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xviii, 321 pages) |
ISBN: | 9781139172615 |
DOI: | 10.1017/CBO9781139172615 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043943593 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1992 |||| o||u| ||||||eng d | ||
020 | |a 9781139172615 |c Online |9 978-1-139-17261-5 | ||
024 | 7 | |a 10.1017/CBO9781139172615 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781139172615 | ||
035 | |a (OCoLC)967602862 | ||
035 | |a (DE-599)BVBBV043943593 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 516/.362 |2 20 | |
084 | |a SK 370 |0 (DE-625)143234: |2 rvk | ||
100 | 1 | |a Bruce, J. W. |d 1952- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Curves and singularities |b a geometrical introduction to singularity theory |c J.W. Bruce, P.J. Giblin |
246 | 1 | 3 | |a Curves & Singularities |
250 | |a Second edition | ||
264 | 1 | |a Cambridge |b Cambridge University Press |c 1992 | |
300 | |a 1 online resource (xviii, 321 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a The differential geometry of curves and surfaces in Euclidean space has fascinated mathematicians since the time of Newton. Here the authors cast the theory into a new light, that of singularity theory. This second edition has been thoroughly revised throughout and includes a multitude of new exercises and examples. A new final chapter has been added which covers recently developed techniques in the classification of functions of several variables, a subject central to many applications of singularity theory. Also in this second edition are new sections on the Morse lemma and the classification of plane curve singularities. The only prerequisites for students to follow this textbook are a familiarity with linear algebra and advanced calculus. Thus it will be invaluable for anyone who would like an introduction to modern singularity theory | ||
650 | 4 | |a Singularities (Mathematics) | |
650 | 4 | |a Curves | |
650 | 0 | 7 | |a Glatte Kurve |0 (DE-588)4157470-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differentialgeometrie |0 (DE-588)4012248-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Singularität |g Mathematik |0 (DE-588)4077459-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kurvensingularität |0 (DE-588)4166228-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Differentialgeometrie |0 (DE-588)4012248-7 |D s |
689 | 0 | 1 | |a Singularität |g Mathematik |0 (DE-588)4077459-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Glatte Kurve |0 (DE-588)4157470-9 |D s |
689 | 1 | 1 | |a Singularität |g Mathematik |0 (DE-588)4077459-4 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Kurvensingularität |0 (DE-588)4166228-3 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
700 | 1 | |a Giblin, P. J. |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-41985-7 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-42999-3 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781139172615 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029352564 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9781139172615 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781139172615 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176887598022656 |
---|---|
any_adam_object | |
author | Bruce, J. W. 1952- |
author_facet | Bruce, J. W. 1952- |
author_role | aut |
author_sort | Bruce, J. W. 1952- |
author_variant | j w b jw jwb |
building | Verbundindex |
bvnumber | BV043943593 |
classification_rvk | SK 370 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781139172615 (OCoLC)967602862 (DE-599)BVBBV043943593 |
dewey-full | 516/.362 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516/.362 |
dewey-search | 516/.362 |
dewey-sort | 3516 3362 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9781139172615 |
edition | Second edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03514nmm a2200637zc 4500</leader><controlfield tag="001">BV043943593</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1992 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139172615</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-139-17261-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781139172615</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781139172615</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967602862</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043943593</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516/.362</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bruce, J. W.</subfield><subfield code="d">1952-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Curves and singularities</subfield><subfield code="b">a geometrical introduction to singularity theory</subfield><subfield code="c">J.W. Bruce, P.J. Giblin</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Curves & Singularities</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1992</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xviii, 321 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The differential geometry of curves and surfaces in Euclidean space has fascinated mathematicians since the time of Newton. Here the authors cast the theory into a new light, that of singularity theory. This second edition has been thoroughly revised throughout and includes a multitude of new exercises and examples. A new final chapter has been added which covers recently developed techniques in the classification of functions of several variables, a subject central to many applications of singularity theory. Also in this second edition are new sections on the Morse lemma and the classification of plane curve singularities. The only prerequisites for students to follow this textbook are a familiarity with linear algebra and advanced calculus. Thus it will be invaluable for anyone who would like an introduction to modern singularity theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Singularities (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Curves</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Glatte Kurve</subfield><subfield code="0">(DE-588)4157470-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialgeometrie</subfield><subfield code="0">(DE-588)4012248-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Singularität</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4077459-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kurvensingularität</subfield><subfield code="0">(DE-588)4166228-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Differentialgeometrie</subfield><subfield code="0">(DE-588)4012248-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Singularität</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4077459-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Glatte Kurve</subfield><subfield code="0">(DE-588)4157470-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Singularität</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4077459-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Kurvensingularität</subfield><subfield code="0">(DE-588)4166228-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Giblin, P. J.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-41985-7</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-42999-3</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781139172615</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029352564</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139172615</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139172615</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043943593 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:19Z |
institution | BVB |
isbn | 9781139172615 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029352564 |
oclc_num | 967602862 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xviii, 321 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1992 |
publishDateSearch | 1992 |
publishDateSort | 1992 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Bruce, J. W. 1952- Verfasser aut Curves and singularities a geometrical introduction to singularity theory J.W. Bruce, P.J. Giblin Curves & Singularities Second edition Cambridge Cambridge University Press 1992 1 online resource (xviii, 321 pages) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 05 Oct 2015) The differential geometry of curves and surfaces in Euclidean space has fascinated mathematicians since the time of Newton. Here the authors cast the theory into a new light, that of singularity theory. This second edition has been thoroughly revised throughout and includes a multitude of new exercises and examples. A new final chapter has been added which covers recently developed techniques in the classification of functions of several variables, a subject central to many applications of singularity theory. Also in this second edition are new sections on the Morse lemma and the classification of plane curve singularities. The only prerequisites for students to follow this textbook are a familiarity with linear algebra and advanced calculus. Thus it will be invaluable for anyone who would like an introduction to modern singularity theory Singularities (Mathematics) Curves Glatte Kurve (DE-588)4157470-9 gnd rswk-swf Differentialgeometrie (DE-588)4012248-7 gnd rswk-swf Singularität Mathematik (DE-588)4077459-4 gnd rswk-swf Kurvensingularität (DE-588)4166228-3 gnd rswk-swf Differentialgeometrie (DE-588)4012248-7 s Singularität Mathematik (DE-588)4077459-4 s 1\p DE-604 Glatte Kurve (DE-588)4157470-9 s 2\p DE-604 Kurvensingularität (DE-588)4166228-3 s 3\p DE-604 Giblin, P. J. Sonstige oth Erscheint auch als Druckausgabe 978-0-521-41985-7 Erscheint auch als Druckausgabe 978-0-521-42999-3 https://doi.org/10.1017/CBO9781139172615 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Bruce, J. W. 1952- Curves and singularities a geometrical introduction to singularity theory Singularities (Mathematics) Curves Glatte Kurve (DE-588)4157470-9 gnd Differentialgeometrie (DE-588)4012248-7 gnd Singularität Mathematik (DE-588)4077459-4 gnd Kurvensingularität (DE-588)4166228-3 gnd |
subject_GND | (DE-588)4157470-9 (DE-588)4012248-7 (DE-588)4077459-4 (DE-588)4166228-3 |
title | Curves and singularities a geometrical introduction to singularity theory |
title_alt | Curves & Singularities |
title_auth | Curves and singularities a geometrical introduction to singularity theory |
title_exact_search | Curves and singularities a geometrical introduction to singularity theory |
title_full | Curves and singularities a geometrical introduction to singularity theory J.W. Bruce, P.J. Giblin |
title_fullStr | Curves and singularities a geometrical introduction to singularity theory J.W. Bruce, P.J. Giblin |
title_full_unstemmed | Curves and singularities a geometrical introduction to singularity theory J.W. Bruce, P.J. Giblin |
title_short | Curves and singularities |
title_sort | curves and singularities a geometrical introduction to singularity theory |
title_sub | a geometrical introduction to singularity theory |
topic | Singularities (Mathematics) Curves Glatte Kurve (DE-588)4157470-9 gnd Differentialgeometrie (DE-588)4012248-7 gnd Singularität Mathematik (DE-588)4077459-4 gnd Kurvensingularität (DE-588)4166228-3 gnd |
topic_facet | Singularities (Mathematics) Curves Glatte Kurve Differentialgeometrie Singularität Mathematik Kurvensingularität |
url | https://doi.org/10.1017/CBO9781139172615 |
work_keys_str_mv | AT brucejw curvesandsingularitiesageometricalintroductiontosingularitytheory AT giblinpj curvesandsingularitiesageometricalintroductiontosingularitytheory AT brucejw curvessingularities AT giblinpj curvessingularities |