Elementary Euclidean geometry: an introduction
This book, first published in 2004, is a genuine introduction to the geometry of lines and conics in the Euclidean plane. Lines and circles provide the starting point, with the classical invariants of general conics introduced at an early stage, yielding a broad subdivision into types, a prelude to...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2003
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | This book, first published in 2004, is a genuine introduction to the geometry of lines and conics in the Euclidean plane. Lines and circles provide the starting point, with the classical invariants of general conics introduced at an early stage, yielding a broad subdivision into types, a prelude to the congruence classification. A recurring theme is the way in which lines intersect conics. From single lines one proceeds to parallel pencils, leading to midpoint loci, axes and asymptotic directions. Likewise, intersections with general pencils of lines lead to the central concepts of tangent, normal, pole and polar. The treatment is example based and self contained, assuming only a basic grounding in linear algebra. With numerous illustrations and several hundred worked examples and exercises, this book is ideal for use with undergraduate courses in mathematics, or for postgraduates in the engineering and physical sciences |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xvi, 174 pages) |
ISBN: | 9780511755194 |
DOI: | 10.1017/CBO9780511755194 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043943500 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2003 |||| o||u| ||||||eng d | ||
020 | |a 9780511755194 |c Online |9 978-0-511-75519-4 | ||
024 | 7 | |a 10.1017/CBO9780511755194 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511755194 | ||
035 | |a (OCoLC)850776105 | ||
035 | |a (DE-599)BVBBV043943500 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 516.2 |2 22 | |
084 | |a SK 380 |0 (DE-625)143235: |2 rvk | ||
100 | 1 | |a Gibson, Christopher G. |d 1940- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Elementary Euclidean geometry |b an introduction |c C.G. Gibson |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2003 | |
300 | |a 1 online resource (xvi, 174 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a This book, first published in 2004, is a genuine introduction to the geometry of lines and conics in the Euclidean plane. Lines and circles provide the starting point, with the classical invariants of general conics introduced at an early stage, yielding a broad subdivision into types, a prelude to the congruence classification. A recurring theme is the way in which lines intersect conics. From single lines one proceeds to parallel pencils, leading to midpoint loci, axes and asymptotic directions. Likewise, intersections with general pencils of lines lead to the central concepts of tangent, normal, pole and polar. The treatment is example based and self contained, assuming only a basic grounding in linear algebra. With numerous illustrations and several hundred worked examples and exercises, this book is ideal for use with undergraduate courses in mathematics, or for postgraduates in the engineering and physical sciences | ||
650 | 4 | |a Geometry | |
650 | 0 | 7 | |a Euklidische Geometrie |0 (DE-588)4137555-5 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
689 | 0 | 0 | |a Euklidische Geometrie |0 (DE-588)4137555-5 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-83448-3 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511755194 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029352471 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511755194 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511755194 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176887438639104 |
---|---|
any_adam_object | |
author | Gibson, Christopher G. 1940- |
author_facet | Gibson, Christopher G. 1940- |
author_role | aut |
author_sort | Gibson, Christopher G. 1940- |
author_variant | c g g cg cgg |
building | Verbundindex |
bvnumber | BV043943500 |
classification_rvk | SK 380 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511755194 (OCoLC)850776105 (DE-599)BVBBV043943500 |
dewey-full | 516.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.2 |
dewey-search | 516.2 |
dewey-sort | 3516.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511755194 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02815nmm a2200469zc 4500</leader><controlfield tag="001">BV043943500</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2003 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511755194</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-75519-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511755194</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511755194</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)850776105</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043943500</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.2</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 380</subfield><subfield code="0">(DE-625)143235:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gibson, Christopher G.</subfield><subfield code="d">1940-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Elementary Euclidean geometry</subfield><subfield code="b">an introduction</subfield><subfield code="c">C.G. Gibson</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xvi, 174 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book, first published in 2004, is a genuine introduction to the geometry of lines and conics in the Euclidean plane. Lines and circles provide the starting point, with the classical invariants of general conics introduced at an early stage, yielding a broad subdivision into types, a prelude to the congruence classification. A recurring theme is the way in which lines intersect conics. From single lines one proceeds to parallel pencils, leading to midpoint loci, axes and asymptotic directions. Likewise, intersections with general pencils of lines lead to the central concepts of tangent, normal, pole and polar. The treatment is example based and self contained, assuming only a basic grounding in linear algebra. With numerous illustrations and several hundred worked examples and exercises, this book is ideal for use with undergraduate courses in mathematics, or for postgraduates in the engineering and physical sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Euklidische Geometrie</subfield><subfield code="0">(DE-588)4137555-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Euklidische Geometrie</subfield><subfield code="0">(DE-588)4137555-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-83448-3</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511755194</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029352471</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511755194</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511755194</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4151278-9 Einführung gnd-content |
genre_facet | Einführung |
id | DE-604.BV043943500 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:19Z |
institution | BVB |
isbn | 9780511755194 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029352471 |
oclc_num | 850776105 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xvi, 174 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Gibson, Christopher G. 1940- Verfasser aut Elementary Euclidean geometry an introduction C.G. Gibson Cambridge Cambridge University Press 2003 1 online resource (xvi, 174 pages) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 05 Oct 2015) This book, first published in 2004, is a genuine introduction to the geometry of lines and conics in the Euclidean plane. Lines and circles provide the starting point, with the classical invariants of general conics introduced at an early stage, yielding a broad subdivision into types, a prelude to the congruence classification. A recurring theme is the way in which lines intersect conics. From single lines one proceeds to parallel pencils, leading to midpoint loci, axes and asymptotic directions. Likewise, intersections with general pencils of lines lead to the central concepts of tangent, normal, pole and polar. The treatment is example based and self contained, assuming only a basic grounding in linear algebra. With numerous illustrations and several hundred worked examples and exercises, this book is ideal for use with undergraduate courses in mathematics, or for postgraduates in the engineering and physical sciences Geometry Euklidische Geometrie (DE-588)4137555-5 gnd rswk-swf 1\p (DE-588)4151278-9 Einführung gnd-content Euklidische Geometrie (DE-588)4137555-5 s 2\p DE-604 Erscheint auch als Druckausgabe 978-0-521-83448-3 https://doi.org/10.1017/CBO9780511755194 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Gibson, Christopher G. 1940- Elementary Euclidean geometry an introduction Geometry Euklidische Geometrie (DE-588)4137555-5 gnd |
subject_GND | (DE-588)4137555-5 (DE-588)4151278-9 |
title | Elementary Euclidean geometry an introduction |
title_auth | Elementary Euclidean geometry an introduction |
title_exact_search | Elementary Euclidean geometry an introduction |
title_full | Elementary Euclidean geometry an introduction C.G. Gibson |
title_fullStr | Elementary Euclidean geometry an introduction C.G. Gibson |
title_full_unstemmed | Elementary Euclidean geometry an introduction C.G. Gibson |
title_short | Elementary Euclidean geometry |
title_sort | elementary euclidean geometry an introduction |
title_sub | an introduction |
topic | Geometry Euklidische Geometrie (DE-588)4137555-5 gnd |
topic_facet | Geometry Euklidische Geometrie Einführung |
url | https://doi.org/10.1017/CBO9780511755194 |
work_keys_str_mv | AT gibsonchristopherg elementaryeuclideangeometryanintroduction |