Inequalities: a journey into linear analysis
This book contains a wealth of inequalities used in linear analysis, and explains in detail how they are used. The book begins with Cauchy's inequality and ends with Grothendieck's inequality, in between one finds the Loomis-Whitney inequality, maximal inequalities, inequalities of Hardy a...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2007
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | This book contains a wealth of inequalities used in linear analysis, and explains in detail how they are used. The book begins with Cauchy's inequality and ends with Grothendieck's inequality, in between one finds the Loomis-Whitney inequality, maximal inequalities, inequalities of Hardy and of Hilbert, hypercontractive and logarithmic Sobolev inequalities, Beckner's inequality, and many, many more. The inequalities are used to obtain properties of function spaces, linear operators between them, and of special classes of operators such as absolutely summing operators. This textbook complements and fills out standard treatments, providing many diverse applications: for example, the Lebesgue decomposition theorem and the Lebesgue density theorem, the Hilbert transform and other singular integral operators, the martingale convergence theorem, eigenvalue distributions, Lidskii's trace formula, Mercer's theorem and Littlewood's 4/3 theorem. It will broaden the knowledge of postgraduate and research students, and should also appeal to their teachers, and all who work in linear analysis |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (ix, 335 pages) |
ISBN: | 9780511755217 |
DOI: | 10.1017/CBO9780511755217 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043943372 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2007 |||| o||u| ||||||eng d | ||
020 | |a 9780511755217 |c Online |9 978-0-511-75521-7 | ||
024 | 7 | |a 10.1017/CBO9780511755217 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511755217 | ||
035 | |a (OCoLC)850007104 | ||
035 | |a (DE-599)BVBBV043943372 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 515/.26 |2 22 | |
084 | |a SK 490 |0 (DE-625)143242: |2 rvk | ||
100 | 1 | |a Garling, D. J. H. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Inequalities |b a journey into linear analysis |c D.J.H. Garling |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2007 | |
300 | |a 1 online resource (ix, 335 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a This book contains a wealth of inequalities used in linear analysis, and explains in detail how they are used. The book begins with Cauchy's inequality and ends with Grothendieck's inequality, in between one finds the Loomis-Whitney inequality, maximal inequalities, inequalities of Hardy and of Hilbert, hypercontractive and logarithmic Sobolev inequalities, Beckner's inequality, and many, many more. The inequalities are used to obtain properties of function spaces, linear operators between them, and of special classes of operators such as absolutely summing operators. This textbook complements and fills out standard treatments, providing many diverse applications: for example, the Lebesgue decomposition theorem and the Lebesgue density theorem, the Hilbert transform and other singular integral operators, the martingale convergence theorem, eigenvalue distributions, Lidskii's trace formula, Mercer's theorem and Littlewood's 4/3 theorem. It will broaden the knowledge of postgraduate and research students, and should also appeal to their teachers, and all who work in linear analysis | ||
650 | 4 | |a Inequalities (Mathematics) | |
650 | 4 | |a Functional analysis | |
650 | 0 | 7 | |a Ungleichung |0 (DE-588)4139098-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lineare Funktionalanalysis |0 (DE-588)4114425-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lineare Funktionalanalysis |0 (DE-588)4114425-9 |D s |
689 | 0 | 1 | |a Ungleichung |0 (DE-588)4139098-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-69973-0 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-87624-7 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511755217 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029352342 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511755217 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511755217 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176887183835136 |
---|---|
any_adam_object | |
author | Garling, D. J. H. |
author_facet | Garling, D. J. H. |
author_role | aut |
author_sort | Garling, D. J. H. |
author_variant | d j h g djh djhg |
building | Verbundindex |
bvnumber | BV043943372 |
classification_rvk | SK 490 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511755217 (OCoLC)850007104 (DE-599)BVBBV043943372 |
dewey-full | 515/.26 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.26 |
dewey-search | 515/.26 |
dewey-sort | 3515 226 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511755217 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03060nmm a2200493zc 4500</leader><controlfield tag="001">BV043943372</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2007 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511755217</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-75521-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511755217</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511755217</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)850007104</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043943372</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.26</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 490</subfield><subfield code="0">(DE-625)143242:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Garling, D. J. H.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Inequalities</subfield><subfield code="b">a journey into linear analysis</subfield><subfield code="c">D.J.H. Garling</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (ix, 335 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book contains a wealth of inequalities used in linear analysis, and explains in detail how they are used. The book begins with Cauchy's inequality and ends with Grothendieck's inequality, in between one finds the Loomis-Whitney inequality, maximal inequalities, inequalities of Hardy and of Hilbert, hypercontractive and logarithmic Sobolev inequalities, Beckner's inequality, and many, many more. The inequalities are used to obtain properties of function spaces, linear operators between them, and of special classes of operators such as absolutely summing operators. This textbook complements and fills out standard treatments, providing many diverse applications: for example, the Lebesgue decomposition theorem and the Lebesgue density theorem, the Hilbert transform and other singular integral operators, the martingale convergence theorem, eigenvalue distributions, Lidskii's trace formula, Mercer's theorem and Littlewood's 4/3 theorem. It will broaden the knowledge of postgraduate and research students, and should also appeal to their teachers, and all who work in linear analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inequalities (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ungleichung</subfield><subfield code="0">(DE-588)4139098-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineare Funktionalanalysis</subfield><subfield code="0">(DE-588)4114425-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lineare Funktionalanalysis</subfield><subfield code="0">(DE-588)4114425-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Ungleichung</subfield><subfield code="0">(DE-588)4139098-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-69973-0</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-87624-7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511755217</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029352342</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511755217</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511755217</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043943372 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:19Z |
institution | BVB |
isbn | 9780511755217 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029352342 |
oclc_num | 850007104 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (ix, 335 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Garling, D. J. H. Verfasser aut Inequalities a journey into linear analysis D.J.H. Garling Cambridge Cambridge University Press 2007 1 online resource (ix, 335 pages) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 05 Oct 2015) This book contains a wealth of inequalities used in linear analysis, and explains in detail how they are used. The book begins with Cauchy's inequality and ends with Grothendieck's inequality, in between one finds the Loomis-Whitney inequality, maximal inequalities, inequalities of Hardy and of Hilbert, hypercontractive and logarithmic Sobolev inequalities, Beckner's inequality, and many, many more. The inequalities are used to obtain properties of function spaces, linear operators between them, and of special classes of operators such as absolutely summing operators. This textbook complements and fills out standard treatments, providing many diverse applications: for example, the Lebesgue decomposition theorem and the Lebesgue density theorem, the Hilbert transform and other singular integral operators, the martingale convergence theorem, eigenvalue distributions, Lidskii's trace formula, Mercer's theorem and Littlewood's 4/3 theorem. It will broaden the knowledge of postgraduate and research students, and should also appeal to their teachers, and all who work in linear analysis Inequalities (Mathematics) Functional analysis Ungleichung (DE-588)4139098-2 gnd rswk-swf Lineare Funktionalanalysis (DE-588)4114425-9 gnd rswk-swf Lineare Funktionalanalysis (DE-588)4114425-9 s Ungleichung (DE-588)4139098-2 s 1\p DE-604 Erscheint auch als Druckausgabe 978-0-521-69973-0 Erscheint auch als Druckausgabe 978-0-521-87624-7 https://doi.org/10.1017/CBO9780511755217 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Garling, D. J. H. Inequalities a journey into linear analysis Inequalities (Mathematics) Functional analysis Ungleichung (DE-588)4139098-2 gnd Lineare Funktionalanalysis (DE-588)4114425-9 gnd |
subject_GND | (DE-588)4139098-2 (DE-588)4114425-9 |
title | Inequalities a journey into linear analysis |
title_auth | Inequalities a journey into linear analysis |
title_exact_search | Inequalities a journey into linear analysis |
title_full | Inequalities a journey into linear analysis D.J.H. Garling |
title_fullStr | Inequalities a journey into linear analysis D.J.H. Garling |
title_full_unstemmed | Inequalities a journey into linear analysis D.J.H. Garling |
title_short | Inequalities |
title_sort | inequalities a journey into linear analysis |
title_sub | a journey into linear analysis |
topic | Inequalities (Mathematics) Functional analysis Ungleichung (DE-588)4139098-2 gnd Lineare Funktionalanalysis (DE-588)4114425-9 gnd |
topic_facet | Inequalities (Mathematics) Functional analysis Ungleichung Lineare Funktionalanalysis |
url | https://doi.org/10.1017/CBO9780511755217 |
work_keys_str_mv | AT garlingdjh inequalitiesajourneyintolinearanalysis |