Elementary geometry of algebraic curves: an undergraduate introduction
This is a genuine introduction to plane algebraic curves from a geometric viewpoint, designed as a first text for undergraduates in mathematics, or for postgraduate and research workers in the engineering and physical sciences. The book contains several hundred worked examples and exercises, making...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1998
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | This is a genuine introduction to plane algebraic curves from a geometric viewpoint, designed as a first text for undergraduates in mathematics, or for postgraduate and research workers in the engineering and physical sciences. The book contains several hundred worked examples and exercises, making it suitable for adoption as a course text. From the lines and conics of elementary geometry the reader proceeds to general curves in the real affine plane, with excursions to more general fields to illustrate applications, such as number theory. By adding points at infinity the affine plane is extended to the projective plane, yielding a natural setting for curves and providing a flood of illumination into the underlying geometry. A minimal amount of algebra leads to the famous theorem of Bezout, whilst the ideas of linear systems are used to discuss the classical group structure on the cubic |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xvi, 250 pages) |
ISBN: | 9781139173285 |
DOI: | 10.1017/CBO9781139173285 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043943355 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1998 |||| o||u| ||||||eng d | ||
020 | |a 9781139173285 |c Online |9 978-1-139-17328-5 | ||
024 | 7 | |a 10.1017/CBO9781139173285 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781139173285 | ||
035 | |a (OCoLC)992849194 | ||
035 | |a (DE-599)BVBBV043943355 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 516.3/52 |2 21 | |
084 | |a SK 240 |0 (DE-625)143226: |2 rvk | ||
100 | 1 | |a Gibson, Christopher G. |d 1940- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Elementary geometry of algebraic curves |b an undergraduate introduction |c C.G. Gibson |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1998 | |
300 | |a 1 online resource (xvi, 250 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a This is a genuine introduction to plane algebraic curves from a geometric viewpoint, designed as a first text for undergraduates in mathematics, or for postgraduate and research workers in the engineering and physical sciences. The book contains several hundred worked examples and exercises, making it suitable for adoption as a course text. From the lines and conics of elementary geometry the reader proceeds to general curves in the real affine plane, with excursions to more general fields to illustrate applications, such as number theory. By adding points at infinity the affine plane is extended to the projective plane, yielding a natural setting for curves and providing a flood of illumination into the underlying geometry. A minimal amount of algebra leads to the famous theorem of Bezout, whilst the ideas of linear systems are used to discuss the classical group structure on the cubic | ||
650 | 4 | |a Curves, Algebraic | |
650 | 0 | 7 | |a Algebraische Kurve |0 (DE-588)4001165-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algebraische Geometrie |0 (DE-588)4001161-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Algebraische Kurve |0 (DE-588)4001165-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Algebraische Geometrie |0 (DE-588)4001161-6 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-64140-1 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-64641-3 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781139173285 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029352325 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9781139173285 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781139173285 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176887159717888 |
---|---|
any_adam_object | |
author | Gibson, Christopher G. 1940- |
author_facet | Gibson, Christopher G. 1940- |
author_role | aut |
author_sort | Gibson, Christopher G. 1940- |
author_variant | c g g cg cgg |
building | Verbundindex |
bvnumber | BV043943355 |
classification_rvk | SK 240 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781139173285 (OCoLC)992849194 (DE-599)BVBBV043943355 |
dewey-full | 516.3/52 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.3/52 |
dewey-search | 516.3/52 |
dewey-sort | 3516.3 252 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9781139173285 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02975nmm a2200505zc 4500</leader><controlfield tag="001">BV043943355</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1998 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139173285</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-139-17328-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781139173285</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781139173285</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)992849194</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043943355</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.3/52</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 240</subfield><subfield code="0">(DE-625)143226:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gibson, Christopher G.</subfield><subfield code="d">1940-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Elementary geometry of algebraic curves</subfield><subfield code="b">an undergraduate introduction</subfield><subfield code="c">C.G. Gibson</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xvi, 250 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This is a genuine introduction to plane algebraic curves from a geometric viewpoint, designed as a first text for undergraduates in mathematics, or for postgraduate and research workers in the engineering and physical sciences. The book contains several hundred worked examples and exercises, making it suitable for adoption as a course text. From the lines and conics of elementary geometry the reader proceeds to general curves in the real affine plane, with excursions to more general fields to illustrate applications, such as number theory. By adding points at infinity the affine plane is extended to the projective plane, yielding a natural setting for curves and providing a flood of illumination into the underlying geometry. A minimal amount of algebra leads to the famous theorem of Bezout, whilst the ideas of linear systems are used to discuss the classical group structure on the cubic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Curves, Algebraic</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Kurve</subfield><subfield code="0">(DE-588)4001165-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Algebraische Kurve</subfield><subfield code="0">(DE-588)4001165-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-64140-1</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-64641-3</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781139173285</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029352325</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139173285</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139173285</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043943355 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:19Z |
institution | BVB |
isbn | 9781139173285 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029352325 |
oclc_num | 992849194 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xvi, 250 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Gibson, Christopher G. 1940- Verfasser aut Elementary geometry of algebraic curves an undergraduate introduction C.G. Gibson Cambridge Cambridge University Press 1998 1 online resource (xvi, 250 pages) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 05 Oct 2015) This is a genuine introduction to plane algebraic curves from a geometric viewpoint, designed as a first text for undergraduates in mathematics, or for postgraduate and research workers in the engineering and physical sciences. The book contains several hundred worked examples and exercises, making it suitable for adoption as a course text. From the lines and conics of elementary geometry the reader proceeds to general curves in the real affine plane, with excursions to more general fields to illustrate applications, such as number theory. By adding points at infinity the affine plane is extended to the projective plane, yielding a natural setting for curves and providing a flood of illumination into the underlying geometry. A minimal amount of algebra leads to the famous theorem of Bezout, whilst the ideas of linear systems are used to discuss the classical group structure on the cubic Curves, Algebraic Algebraische Kurve (DE-588)4001165-3 gnd rswk-swf Algebraische Geometrie (DE-588)4001161-6 gnd rswk-swf Algebraische Kurve (DE-588)4001165-3 s 1\p DE-604 Algebraische Geometrie (DE-588)4001161-6 s 2\p DE-604 Erscheint auch als Druckausgabe 978-0-521-64140-1 Erscheint auch als Druckausgabe 978-0-521-64641-3 https://doi.org/10.1017/CBO9781139173285 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Gibson, Christopher G. 1940- Elementary geometry of algebraic curves an undergraduate introduction Curves, Algebraic Algebraische Kurve (DE-588)4001165-3 gnd Algebraische Geometrie (DE-588)4001161-6 gnd |
subject_GND | (DE-588)4001165-3 (DE-588)4001161-6 |
title | Elementary geometry of algebraic curves an undergraduate introduction |
title_auth | Elementary geometry of algebraic curves an undergraduate introduction |
title_exact_search | Elementary geometry of algebraic curves an undergraduate introduction |
title_full | Elementary geometry of algebraic curves an undergraduate introduction C.G. Gibson |
title_fullStr | Elementary geometry of algebraic curves an undergraduate introduction C.G. Gibson |
title_full_unstemmed | Elementary geometry of algebraic curves an undergraduate introduction C.G. Gibson |
title_short | Elementary geometry of algebraic curves |
title_sort | elementary geometry of algebraic curves an undergraduate introduction |
title_sub | an undergraduate introduction |
topic | Curves, Algebraic Algebraische Kurve (DE-588)4001165-3 gnd Algebraische Geometrie (DE-588)4001161-6 gnd |
topic_facet | Curves, Algebraic Algebraische Kurve Algebraische Geometrie |
url | https://doi.org/10.1017/CBO9781139173285 |
work_keys_str_mv | AT gibsonchristopherg elementarygeometryofalgebraiccurvesanundergraduateintroduction |