Notes on logic and set theory:
This short textbook provides a succinct introduction to mathematical logic and set theory, which together form the foundations for the rigorous development of mathematics. It will be suitable for all mathematics undergraduates coming to the subject for the first time. The book is based on lectures g...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1987
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | This short textbook provides a succinct introduction to mathematical logic and set theory, which together form the foundations for the rigorous development of mathematics. It will be suitable for all mathematics undergraduates coming to the subject for the first time. The book is based on lectures given at the University of Cambridge and covers the basic concepts of logic: first order logic, consistency, and the completeness theorem, before introducing the reader to the fundamentals of axiomatic set theory. There are also chapters on recursive functions, the axiom of choice, ordinal and cardinal arithmetic and the incompleteness theorems. Dr Johnstone has included numerous exercises designed to illustrate the key elements of the theory and to provide applications of basic logical concepts to other areas of mathematics. Consequently the book, while making an attractive first textbook for those who plan to specialise in logic, will be particularly valuable for mathematics and computer scientists whose primary interests lie elsewhere |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (x, 110 pages) |
ISBN: | 9781139172066 |
DOI: | 10.1017/CBO9781139172066 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043943299 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1987 |||| o||u| ||||||eng d | ||
020 | |a 9781139172066 |c Online |9 978-1-139-17206-6 | ||
024 | 7 | |a 10.1017/CBO9781139172066 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781139172066 | ||
035 | |a (OCoLC)992892438 | ||
035 | |a (DE-599)BVBBV043943299 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 511.3 |2 19eng | |
084 | |a SK 130 |0 (DE-625)143216: |2 rvk | ||
100 | 1 | |a Johnstone, P. T. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Notes on logic and set theory |c P.T. Johnstone |
246 | 1 | 3 | |a Notes on Logic & Set Theory |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1987 | |
300 | |a 1 online resource (x, 110 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a This short textbook provides a succinct introduction to mathematical logic and set theory, which together form the foundations for the rigorous development of mathematics. It will be suitable for all mathematics undergraduates coming to the subject for the first time. The book is based on lectures given at the University of Cambridge and covers the basic concepts of logic: first order logic, consistency, and the completeness theorem, before introducing the reader to the fundamentals of axiomatic set theory. There are also chapters on recursive functions, the axiom of choice, ordinal and cardinal arithmetic and the incompleteness theorems. Dr Johnstone has included numerous exercises designed to illustrate the key elements of the theory and to provide applications of basic logical concepts to other areas of mathematics. Consequently the book, while making an attractive first textbook for those who plan to specialise in logic, will be particularly valuable for mathematics and computer scientists whose primary interests lie elsewhere | ||
650 | 4 | |a Logic, Symbolic and mathematical | |
650 | 4 | |a Set theory | |
650 | 0 | 7 | |a Mathematische Logik |0 (DE-588)4037951-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Axiomatische Mengenlehre |0 (DE-588)4143743-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mengenlehre |0 (DE-588)4074715-3 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
689 | 0 | 0 | |a Mengenlehre |0 (DE-588)4074715-3 |D s |
689 | 0 | 1 | |a Mathematische Logik |0 (DE-588)4037951-6 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
689 | 1 | 0 | |a Axiomatische Mengenlehre |0 (DE-588)4143743-3 |D s |
689 | 1 | |8 3\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-33502-7 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-33692-5 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781139172066 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029352269 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9781139172066 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781139172066 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176887054860288 |
---|---|
any_adam_object | |
author | Johnstone, P. T. |
author_facet | Johnstone, P. T. |
author_role | aut |
author_sort | Johnstone, P. T. |
author_variant | p t j pt ptj |
building | Verbundindex |
bvnumber | BV043943299 |
classification_rvk | SK 130 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781139172066 (OCoLC)992892438 (DE-599)BVBBV043943299 |
dewey-full | 511.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.3 |
dewey-search | 511.3 |
dewey-sort | 3511.3 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9781139172066 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03424nmm a2200577zc 4500</leader><controlfield tag="001">BV043943299</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1987 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139172066</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-139-17206-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781139172066</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781139172066</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)992892438</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043943299</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.3</subfield><subfield code="2">19eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 130</subfield><subfield code="0">(DE-625)143216:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Johnstone, P. T.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Notes on logic and set theory</subfield><subfield code="c">P.T. Johnstone</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Notes on Logic & Set Theory</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1987</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (x, 110 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This short textbook provides a succinct introduction to mathematical logic and set theory, which together form the foundations for the rigorous development of mathematics. It will be suitable for all mathematics undergraduates coming to the subject for the first time. The book is based on lectures given at the University of Cambridge and covers the basic concepts of logic: first order logic, consistency, and the completeness theorem, before introducing the reader to the fundamentals of axiomatic set theory. There are also chapters on recursive functions, the axiom of choice, ordinal and cardinal arithmetic and the incompleteness theorems. Dr Johnstone has included numerous exercises designed to illustrate the key elements of the theory and to provide applications of basic logical concepts to other areas of mathematics. Consequently the book, while making an attractive first textbook for those who plan to specialise in logic, will be particularly valuable for mathematics and computer scientists whose primary interests lie elsewhere</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logic, Symbolic and mathematical</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Set theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Logik</subfield><subfield code="0">(DE-588)4037951-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Axiomatische Mengenlehre</subfield><subfield code="0">(DE-588)4143743-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mengenlehre</subfield><subfield code="0">(DE-588)4074715-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mengenlehre</subfield><subfield code="0">(DE-588)4074715-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematische Logik</subfield><subfield code="0">(DE-588)4037951-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Axiomatische Mengenlehre</subfield><subfield code="0">(DE-588)4143743-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-33502-7</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-33692-5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781139172066</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029352269</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139172066</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139172066</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4151278-9 Einführung gnd-content |
genre_facet | Einführung |
id | DE-604.BV043943299 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:19Z |
institution | BVB |
isbn | 9781139172066 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029352269 |
oclc_num | 992892438 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (x, 110 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1987 |
publishDateSearch | 1987 |
publishDateSort | 1987 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Johnstone, P. T. Verfasser aut Notes on logic and set theory P.T. Johnstone Notes on Logic & Set Theory Cambridge Cambridge University Press 1987 1 online resource (x, 110 pages) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 05 Oct 2015) This short textbook provides a succinct introduction to mathematical logic and set theory, which together form the foundations for the rigorous development of mathematics. It will be suitable for all mathematics undergraduates coming to the subject for the first time. The book is based on lectures given at the University of Cambridge and covers the basic concepts of logic: first order logic, consistency, and the completeness theorem, before introducing the reader to the fundamentals of axiomatic set theory. There are also chapters on recursive functions, the axiom of choice, ordinal and cardinal arithmetic and the incompleteness theorems. Dr Johnstone has included numerous exercises designed to illustrate the key elements of the theory and to provide applications of basic logical concepts to other areas of mathematics. Consequently the book, while making an attractive first textbook for those who plan to specialise in logic, will be particularly valuable for mathematics and computer scientists whose primary interests lie elsewhere Logic, Symbolic and mathematical Set theory Mathematische Logik (DE-588)4037951-6 gnd rswk-swf Axiomatische Mengenlehre (DE-588)4143743-3 gnd rswk-swf Mengenlehre (DE-588)4074715-3 gnd rswk-swf 1\p (DE-588)4151278-9 Einführung gnd-content Mengenlehre (DE-588)4074715-3 s Mathematische Logik (DE-588)4037951-6 s 2\p DE-604 Axiomatische Mengenlehre (DE-588)4143743-3 s 3\p DE-604 Erscheint auch als Druckausgabe 978-0-521-33502-7 Erscheint auch als Druckausgabe 978-0-521-33692-5 https://doi.org/10.1017/CBO9781139172066 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Johnstone, P. T. Notes on logic and set theory Logic, Symbolic and mathematical Set theory Mathematische Logik (DE-588)4037951-6 gnd Axiomatische Mengenlehre (DE-588)4143743-3 gnd Mengenlehre (DE-588)4074715-3 gnd |
subject_GND | (DE-588)4037951-6 (DE-588)4143743-3 (DE-588)4074715-3 (DE-588)4151278-9 |
title | Notes on logic and set theory |
title_alt | Notes on Logic & Set Theory |
title_auth | Notes on logic and set theory |
title_exact_search | Notes on logic and set theory |
title_full | Notes on logic and set theory P.T. Johnstone |
title_fullStr | Notes on logic and set theory P.T. Johnstone |
title_full_unstemmed | Notes on logic and set theory P.T. Johnstone |
title_short | Notes on logic and set theory |
title_sort | notes on logic and set theory |
topic | Logic, Symbolic and mathematical Set theory Mathematische Logik (DE-588)4037951-6 gnd Axiomatische Mengenlehre (DE-588)4143743-3 gnd Mengenlehre (DE-588)4074715-3 gnd |
topic_facet | Logic, Symbolic and mathematical Set theory Mathematische Logik Axiomatische Mengenlehre Mengenlehre Einführung |
url | https://doi.org/10.1017/CBO9781139172066 |
work_keys_str_mv | AT johnstonept notesonlogicandsettheory AT johnstonept notesonlogicsettheory |