Euclidean and non-Euclidean geometry: an analytical approach
This book gives a rigorous treatment of the fundamentals of plane geometry: Euclidean, spherical, elliptical and hyperbolic. The primary purpose is to acquaint the reader with the classical results of plane Euclidean and nonEuclidean geometry, congruence theorems, concurrence theorems, classificatio...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1986
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | This book gives a rigorous treatment of the fundamentals of plane geometry: Euclidean, spherical, elliptical and hyperbolic. The primary purpose is to acquaint the reader with the classical results of plane Euclidean and nonEuclidean geometry, congruence theorems, concurrence theorems, classification of isometries, angle addition and trigonometrical formulae. However, the book not only provides students with facts about and an understanding of the structure of the classical geometries, but also with an arsenal of computational techniques for geometrical investigations. The aim is to link classical and modern geometry to prepare students for further study and research in group theory, Lie groups, differential geometry, topology, and mathematical physics. The book is intended primarily for undergraduate mathematics students who have acquired the ability to formulate mathematical propositions precisely and to construct and understand mathematical arguments. Some familiarity with linear algebra and basic mathematical functions is assumed, though all the necessary background material is included in the appendices |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xvii, 215 pages) |
ISBN: | 9780511806209 |
DOI: | 10.1017/CBO9780511806209 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043943276 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1986 |||| o||u| ||||||eng d | ||
020 | |a 9780511806209 |c Online |9 978-0-511-80620-9 | ||
024 | 7 | |a 10.1017/CBO9780511806209 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511806209 | ||
035 | |a (OCoLC)967685925 | ||
035 | |a (DE-599)BVBBV043943276 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 516 |2 19eng | |
084 | |a SK 370 |0 (DE-625)143234: |2 rvk | ||
084 | |a SK 380 |0 (DE-625)143235: |2 rvk | ||
100 | 1 | |a Ryan, Patrick J. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Euclidean and non-Euclidean geometry |b an analytical approach |c Patrick J. Ryan |
246 | 1 | 3 | |a Euclidean & Non-Euclidean Geometry |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1986 | |
300 | |a 1 online resource (xvii, 215 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a This book gives a rigorous treatment of the fundamentals of plane geometry: Euclidean, spherical, elliptical and hyperbolic. The primary purpose is to acquaint the reader with the classical results of plane Euclidean and nonEuclidean geometry, congruence theorems, concurrence theorems, classification of isometries, angle addition and trigonometrical formulae. However, the book not only provides students with facts about and an understanding of the structure of the classical geometries, but also with an arsenal of computational techniques for geometrical investigations. The aim is to link classical and modern geometry to prepare students for further study and research in group theory, Lie groups, differential geometry, topology, and mathematical physics. The book is intended primarily for undergraduate mathematics students who have acquired the ability to formulate mathematical propositions precisely and to construct and understand mathematical arguments. Some familiarity with linear algebra and basic mathematical functions is assumed, though all the necessary background material is included in the appendices | ||
650 | 4 | |a Geometry, Plane | |
650 | 4 | |a Geometry, Non-Euclidean | |
650 | 0 | 7 | |a Planimetrie |0 (DE-588)4046223-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Euklidische Geometrie |0 (DE-588)4137555-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichteuklidische Geometrie |0 (DE-588)4042073-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Planimetrie |0 (DE-588)4046223-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Euklidische Geometrie |0 (DE-588)4137555-5 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Nichteuklidische Geometrie |0 (DE-588)4042073-5 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-25654-4 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-27635-1 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511806209 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029352246 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511806209 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511806209 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176887005577216 |
---|---|
any_adam_object | |
author | Ryan, Patrick J. |
author_facet | Ryan, Patrick J. |
author_role | aut |
author_sort | Ryan, Patrick J. |
author_variant | p j r pj pjr |
building | Verbundindex |
bvnumber | BV043943276 |
classification_rvk | SK 370 SK 380 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511806209 (OCoLC)967685925 (DE-599)BVBBV043943276 |
dewey-full | 516 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516 |
dewey-search | 516 |
dewey-sort | 3516 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511806209 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03555nmm a2200589zc 4500</leader><controlfield tag="001">BV043943276</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1986 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511806209</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-80620-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511806209</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511806209</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967685925</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043943276</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516</subfield><subfield code="2">19eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 380</subfield><subfield code="0">(DE-625)143235:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ryan, Patrick J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Euclidean and non-Euclidean geometry</subfield><subfield code="b">an analytical approach</subfield><subfield code="c">Patrick J. Ryan</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Euclidean & Non-Euclidean Geometry</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1986</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xvii, 215 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book gives a rigorous treatment of the fundamentals of plane geometry: Euclidean, spherical, elliptical and hyperbolic. The primary purpose is to acquaint the reader with the classical results of plane Euclidean and nonEuclidean geometry, congruence theorems, concurrence theorems, classification of isometries, angle addition and trigonometrical formulae. However, the book not only provides students with facts about and an understanding of the structure of the classical geometries, but also with an arsenal of computational techniques for geometrical investigations. The aim is to link classical and modern geometry to prepare students for further study and research in group theory, Lie groups, differential geometry, topology, and mathematical physics. The book is intended primarily for undergraduate mathematics students who have acquired the ability to formulate mathematical propositions precisely and to construct and understand mathematical arguments. Some familiarity with linear algebra and basic mathematical functions is assumed, though all the necessary background material is included in the appendices</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Plane</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Non-Euclidean</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Planimetrie</subfield><subfield code="0">(DE-588)4046223-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Euklidische Geometrie</subfield><subfield code="0">(DE-588)4137555-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichteuklidische Geometrie</subfield><subfield code="0">(DE-588)4042073-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Planimetrie</subfield><subfield code="0">(DE-588)4046223-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Euklidische Geometrie</subfield><subfield code="0">(DE-588)4137555-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Nichteuklidische Geometrie</subfield><subfield code="0">(DE-588)4042073-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-25654-4</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-27635-1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511806209</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029352246</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511806209</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511806209</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043943276 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:19Z |
institution | BVB |
isbn | 9780511806209 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029352246 |
oclc_num | 967685925 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xvii, 215 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1986 |
publishDateSearch | 1986 |
publishDateSort | 1986 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Ryan, Patrick J. Verfasser aut Euclidean and non-Euclidean geometry an analytical approach Patrick J. Ryan Euclidean & Non-Euclidean Geometry Cambridge Cambridge University Press 1986 1 online resource (xvii, 215 pages) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 05 Oct 2015) This book gives a rigorous treatment of the fundamentals of plane geometry: Euclidean, spherical, elliptical and hyperbolic. The primary purpose is to acquaint the reader with the classical results of plane Euclidean and nonEuclidean geometry, congruence theorems, concurrence theorems, classification of isometries, angle addition and trigonometrical formulae. However, the book not only provides students with facts about and an understanding of the structure of the classical geometries, but also with an arsenal of computational techniques for geometrical investigations. The aim is to link classical and modern geometry to prepare students for further study and research in group theory, Lie groups, differential geometry, topology, and mathematical physics. The book is intended primarily for undergraduate mathematics students who have acquired the ability to formulate mathematical propositions precisely and to construct and understand mathematical arguments. Some familiarity with linear algebra and basic mathematical functions is assumed, though all the necessary background material is included in the appendices Geometry, Plane Geometry, Non-Euclidean Planimetrie (DE-588)4046223-7 gnd rswk-swf Euklidische Geometrie (DE-588)4137555-5 gnd rswk-swf Nichteuklidische Geometrie (DE-588)4042073-5 gnd rswk-swf Planimetrie (DE-588)4046223-7 s 1\p DE-604 Euklidische Geometrie (DE-588)4137555-5 s 2\p DE-604 Nichteuklidische Geometrie (DE-588)4042073-5 s 3\p DE-604 Erscheint auch als Druckausgabe 978-0-521-25654-4 Erscheint auch als Druckausgabe 978-0-521-27635-1 https://doi.org/10.1017/CBO9780511806209 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Ryan, Patrick J. Euclidean and non-Euclidean geometry an analytical approach Geometry, Plane Geometry, Non-Euclidean Planimetrie (DE-588)4046223-7 gnd Euklidische Geometrie (DE-588)4137555-5 gnd Nichteuklidische Geometrie (DE-588)4042073-5 gnd |
subject_GND | (DE-588)4046223-7 (DE-588)4137555-5 (DE-588)4042073-5 |
title | Euclidean and non-Euclidean geometry an analytical approach |
title_alt | Euclidean & Non-Euclidean Geometry |
title_auth | Euclidean and non-Euclidean geometry an analytical approach |
title_exact_search | Euclidean and non-Euclidean geometry an analytical approach |
title_full | Euclidean and non-Euclidean geometry an analytical approach Patrick J. Ryan |
title_fullStr | Euclidean and non-Euclidean geometry an analytical approach Patrick J. Ryan |
title_full_unstemmed | Euclidean and non-Euclidean geometry an analytical approach Patrick J. Ryan |
title_short | Euclidean and non-Euclidean geometry |
title_sort | euclidean and non euclidean geometry an analytical approach |
title_sub | an analytical approach |
topic | Geometry, Plane Geometry, Non-Euclidean Planimetrie (DE-588)4046223-7 gnd Euklidische Geometrie (DE-588)4137555-5 gnd Nichteuklidische Geometrie (DE-588)4042073-5 gnd |
topic_facet | Geometry, Plane Geometry, Non-Euclidean Planimetrie Euklidische Geometrie Nichteuklidische Geometrie |
url | https://doi.org/10.1017/CBO9780511806209 |
work_keys_str_mv | AT ryanpatrickj euclideanandnoneuclideangeometryananalyticalapproach AT ryanpatrickj euclideannoneuclideangeometry |