Machine learning methods in the environmental sciences: neural networks and kernels
Machine learning methods originated from artificial intelligence and are now used in various fields in environmental sciences today. This is the first single-authored textbook providing a unified treatment of machine learning methods and their applications in the environmental sciences. Due to their...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2009
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 URL des Erstveröffentlichers |
Zusammenfassung: | Machine learning methods originated from artificial intelligence and are now used in various fields in environmental sciences today. This is the first single-authored textbook providing a unified treatment of machine learning methods and their applications in the environmental sciences. Due to their powerful nonlinear modelling capability, machine learning methods today are used in satellite data processing, general circulation models(GCM), weather and climate prediction, air quality forecasting, analysis and modelling of environmental data, oceanographic and hydrological forecasting, ecological modelling, and monitoring of snow, ice and forests. The book includes end-of-chapter review questions and an appendix listing web sites for downloading computer code and data sources. A resources website containing datasets for exercises, and password-protected solutions are available. The book is suitable for first-year graduate students and advanced undergraduates. It is also valuable for researchers and practitioners in environmental sciences interested in applying these new methods to their own work |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xiii, 349 pages) |
ISBN: | 9780511627217 |
DOI: | 10.1017/CBO9780511627217 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043943263 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2009 |||| o||u| ||||||eng d | ||
020 | |a 9780511627217 |c Online |9 978-0-511-62721-7 | ||
024 | 7 | |a 10.1017/CBO9780511627217 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511627217 | ||
035 | |a (OCoLC)851100427 | ||
035 | |a (DE-599)BVBBV043943263 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 006.31 |2 22 | |
084 | |a ST 301 |0 (DE-625)143651: |2 rvk | ||
084 | |a ST 302 |0 (DE-625)143652: |2 rvk | ||
100 | 1 | |a Hsieh, William Wei |d 1955- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Machine learning methods in the environmental sciences |b neural networks and kernels |c William W. Hsieh |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2009 | |
300 | |a 1 online resource (xiii, 349 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a Machine learning methods originated from artificial intelligence and are now used in various fields in environmental sciences today. This is the first single-authored textbook providing a unified treatment of machine learning methods and their applications in the environmental sciences. Due to their powerful nonlinear modelling capability, machine learning methods today are used in satellite data processing, general circulation models(GCM), weather and climate prediction, air quality forecasting, analysis and modelling of environmental data, oceanographic and hydrological forecasting, ecological modelling, and monitoring of snow, ice and forests. The book includes end-of-chapter review questions and an appendix listing web sites for downloading computer code and data sources. A resources website containing datasets for exercises, and password-protected solutions are available. The book is suitable for first-year graduate students and advanced undergraduates. It is also valuable for researchers and practitioners in environmental sciences interested in applying these new methods to their own work | ||
650 | 4 | |a Machine learning | |
650 | 4 | |a Environmental sciences | |
650 | 0 | 7 | |a Umweltwissenschaften |0 (DE-588)4137364-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Methode |0 (DE-588)4038971-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Umweltwissenschaften |0 (DE-588)4137364-9 |D s |
689 | 0 | 1 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | 2 | |a Methode |0 (DE-588)4038971-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-79192-2 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-79642-2 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511627217 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029352233 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511627217 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511627217 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176886975168512 |
---|---|
any_adam_object | |
author | Hsieh, William Wei 1955- |
author_facet | Hsieh, William Wei 1955- |
author_role | aut |
author_sort | Hsieh, William Wei 1955- |
author_variant | w w h ww wwh |
building | Verbundindex |
bvnumber | BV043943263 |
classification_rvk | ST 301 ST 302 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511627217 (OCoLC)851100427 (DE-599)BVBBV043943263 |
dewey-full | 006.31 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.31 |
dewey-search | 006.31 |
dewey-sort | 16.31 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
doi_str_mv | 10.1017/CBO9780511627217 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03271nmm a2200529zc 4500</leader><controlfield tag="001">BV043943263</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2009 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511627217</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-62721-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511627217</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511627217</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)851100427</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043943263</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.31</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 301</subfield><subfield code="0">(DE-625)143651:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 302</subfield><subfield code="0">(DE-625)143652:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hsieh, William Wei</subfield><subfield code="d">1955-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine learning methods in the environmental sciences</subfield><subfield code="b">neural networks and kernels</subfield><subfield code="c">William W. Hsieh</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiii, 349 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Machine learning methods originated from artificial intelligence and are now used in various fields in environmental sciences today. This is the first single-authored textbook providing a unified treatment of machine learning methods and their applications in the environmental sciences. Due to their powerful nonlinear modelling capability, machine learning methods today are used in satellite data processing, general circulation models(GCM), weather and climate prediction, air quality forecasting, analysis and modelling of environmental data, oceanographic and hydrological forecasting, ecological modelling, and monitoring of snow, ice and forests. The book includes end-of-chapter review questions and an appendix listing web sites for downloading computer code and data sources. A resources website containing datasets for exercises, and password-protected solutions are available. The book is suitable for first-year graduate students and advanced undergraduates. It is also valuable for researchers and practitioners in environmental sciences interested in applying these new methods to their own work</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Umweltwissenschaften</subfield><subfield code="0">(DE-588)4137364-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Methode</subfield><subfield code="0">(DE-588)4038971-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Umweltwissenschaften</subfield><subfield code="0">(DE-588)4137364-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Methode</subfield><subfield code="0">(DE-588)4038971-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-79192-2</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-79642-2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511627217</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029352233</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511627217</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511627217</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043943263 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:19Z |
institution | BVB |
isbn | 9780511627217 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029352233 |
oclc_num | 851100427 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xiii, 349 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Hsieh, William Wei 1955- Verfasser aut Machine learning methods in the environmental sciences neural networks and kernels William W. Hsieh Cambridge Cambridge University Press 2009 1 online resource (xiii, 349 pages) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 05 Oct 2015) Machine learning methods originated from artificial intelligence and are now used in various fields in environmental sciences today. This is the first single-authored textbook providing a unified treatment of machine learning methods and their applications in the environmental sciences. Due to their powerful nonlinear modelling capability, machine learning methods today are used in satellite data processing, general circulation models(GCM), weather and climate prediction, air quality forecasting, analysis and modelling of environmental data, oceanographic and hydrological forecasting, ecological modelling, and monitoring of snow, ice and forests. The book includes end-of-chapter review questions and an appendix listing web sites for downloading computer code and data sources. A resources website containing datasets for exercises, and password-protected solutions are available. The book is suitable for first-year graduate students and advanced undergraduates. It is also valuable for researchers and practitioners in environmental sciences interested in applying these new methods to their own work Machine learning Environmental sciences Umweltwissenschaften (DE-588)4137364-9 gnd rswk-swf Methode (DE-588)4038971-6 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Umweltwissenschaften (DE-588)4137364-9 s Maschinelles Lernen (DE-588)4193754-5 s Methode (DE-588)4038971-6 s 1\p DE-604 Erscheint auch als Druckausgabe 978-0-521-79192-2 Erscheint auch als Druckausgabe 978-0-521-79642-2 https://doi.org/10.1017/CBO9780511627217 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Hsieh, William Wei 1955- Machine learning methods in the environmental sciences neural networks and kernels Machine learning Environmental sciences Umweltwissenschaften (DE-588)4137364-9 gnd Methode (DE-588)4038971-6 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
subject_GND | (DE-588)4137364-9 (DE-588)4038971-6 (DE-588)4193754-5 |
title | Machine learning methods in the environmental sciences neural networks and kernels |
title_auth | Machine learning methods in the environmental sciences neural networks and kernels |
title_exact_search | Machine learning methods in the environmental sciences neural networks and kernels |
title_full | Machine learning methods in the environmental sciences neural networks and kernels William W. Hsieh |
title_fullStr | Machine learning methods in the environmental sciences neural networks and kernels William W. Hsieh |
title_full_unstemmed | Machine learning methods in the environmental sciences neural networks and kernels William W. Hsieh |
title_short | Machine learning methods in the environmental sciences |
title_sort | machine learning methods in the environmental sciences neural networks and kernels |
title_sub | neural networks and kernels |
topic | Machine learning Environmental sciences Umweltwissenschaften (DE-588)4137364-9 gnd Methode (DE-588)4038971-6 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
topic_facet | Machine learning Environmental sciences Umweltwissenschaften Methode Maschinelles Lernen |
url | https://doi.org/10.1017/CBO9780511627217 |
work_keys_str_mv | AT hsiehwilliamwei machinelearningmethodsintheenvironmentalsciencesneuralnetworksandkernels |