Vectors, pure and applied: a general introduction to linear algebra
Many books in linear algebra focus purely on getting students through exams, but this text explains both the how and the why of linear algebra and enables students to begin thinking like mathematicians. The author demonstrates how different topics (geometry, abstract algebra, numerical analysis, phy...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2013
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | Many books in linear algebra focus purely on getting students through exams, but this text explains both the how and the why of linear algebra and enables students to begin thinking like mathematicians. The author demonstrates how different topics (geometry, abstract algebra, numerical analysis, physics) make use of vectors in different ways and how these ways are connected, preparing students for further work in these areas. The book is packed with hundreds of exercises ranging from the routine to the challenging. Sketch solutions of the easier exercises are available online |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xii, 444 pages) |
ISBN: | 9781139520034 |
DOI: | 10.1017/CBO9781139520034 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043943188 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2013 |||| o||u| ||||||eng d | ||
020 | |a 9781139520034 |c Online |9 978-1-139-52003-4 | ||
024 | 7 | |a 10.1017/CBO9781139520034 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781139520034 | ||
035 | |a (OCoLC)967777673 | ||
035 | |a (DE-599)BVBBV043943188 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 516/.182 |2 23 | |
084 | |a SK 220 |0 (DE-625)143224: |2 rvk | ||
100 | 1 | |a Körner, T. W. |d 1946- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Vectors, pure and applied |b a general introduction to linear algebra |c T.W. Körner, Trinity Hall, Cambridge |
246 | 1 | 3 | |a Vectors, Pure & Applied |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2013 | |
300 | |a 1 online resource (xii, 444 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a Machine generated contents note: Introduction; Part I. Familiar Vector Spaces: 1. Gaussian elimination; 2. A little geometry; 3. The algebra of square matrices; 4. The secret life of determinants; 5. Abstract vector spaces; 6. Linear maps from Fn to itself; 7. Distance preserving linear maps; 8. Diagonalisation for orthonormal bases; 9. Cartesian tensors; 10. More on tensors; Part II. General Vector Spaces: 11. Spaces of linear maps; 12. Polynomials in L(U,U); 13. Vector spaces without distances; 14. Vector spaces with distances; 15. More distances; 16. Quadratic forms and their relatives; Bibliography; Index | |
520 | |a Many books in linear algebra focus purely on getting students through exams, but this text explains both the how and the why of linear algebra and enables students to begin thinking like mathematicians. The author demonstrates how different topics (geometry, abstract algebra, numerical analysis, physics) make use of vectors in different ways and how these ways are connected, preparing students for further work in these areas. The book is packed with hundreds of exercises ranging from the routine to the challenging. Sketch solutions of the easier exercises are available online | ||
650 | 4 | |a Vector algebra | |
650 | 4 | |a Algebras, Linear | |
650 | 0 | 7 | |a Vektorrechnung |0 (DE-588)4062471-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lineare Algebra |0 (DE-588)4035811-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lineare Algebra |0 (DE-588)4035811-2 |D s |
689 | 0 | 1 | |a Vektorrechnung |0 (DE-588)4062471-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-1-107-03356-6 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-1-107-67522-3 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781139520034 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029352159 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9781139520034 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781139520034 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176886861922304 |
---|---|
any_adam_object | |
author | Körner, T. W. 1946- |
author_facet | Körner, T. W. 1946- |
author_role | aut |
author_sort | Körner, T. W. 1946- |
author_variant | t w k tw twk |
building | Verbundindex |
bvnumber | BV043943188 |
classification_rvk | SK 220 |
collection | ZDB-20-CBO |
contents | Machine generated contents note: Introduction; Part I. Familiar Vector Spaces: 1. Gaussian elimination; 2. A little geometry; 3. The algebra of square matrices; 4. The secret life of determinants; 5. Abstract vector spaces; 6. Linear maps from Fn to itself; 7. Distance preserving linear maps; 8. Diagonalisation for orthonormal bases; 9. Cartesian tensors; 10. More on tensors; Part II. General Vector Spaces: 11. Spaces of linear maps; 12. Polynomials in L(U,U); 13. Vector spaces without distances; 14. Vector spaces with distances; 15. More distances; 16. Quadratic forms and their relatives; Bibliography; Index |
ctrlnum | (ZDB-20-CBO)CR9781139520034 (OCoLC)967777673 (DE-599)BVBBV043943188 |
dewey-full | 516/.182 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516/.182 |
dewey-search | 516/.182 |
dewey-sort | 3516 3182 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9781139520034 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03240nmm a2200517zc 4500</leader><controlfield tag="001">BV043943188</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2013 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139520034</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-139-52003-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781139520034</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781139520034</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967777673</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043943188</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516/.182</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 220</subfield><subfield code="0">(DE-625)143224:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Körner, T. W.</subfield><subfield code="d">1946-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Vectors, pure and applied</subfield><subfield code="b">a general introduction to linear algebra</subfield><subfield code="c">T.W. Körner, Trinity Hall, Cambridge</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Vectors, Pure & Applied</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xii, 444 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Machine generated contents note: Introduction; Part I. Familiar Vector Spaces: 1. Gaussian elimination; 2. A little geometry; 3. The algebra of square matrices; 4. The secret life of determinants; 5. Abstract vector spaces; 6. Linear maps from Fn to itself; 7. Distance preserving linear maps; 8. Diagonalisation for orthonormal bases; 9. Cartesian tensors; 10. More on tensors; Part II. General Vector Spaces: 11. Spaces of linear maps; 12. Polynomials in L(U,U); 13. Vector spaces without distances; 14. Vector spaces with distances; 15. More distances; 16. Quadratic forms and their relatives; Bibliography; Index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Many books in linear algebra focus purely on getting students through exams, but this text explains both the how and the why of linear algebra and enables students to begin thinking like mathematicians. The author demonstrates how different topics (geometry, abstract algebra, numerical analysis, physics) make use of vectors in different ways and how these ways are connected, preparing students for further work in these areas. The book is packed with hundreds of exercises ranging from the routine to the challenging. Sketch solutions of the easier exercises are available online</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vector algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebras, Linear</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Vektorrechnung</subfield><subfield code="0">(DE-588)4062471-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineare Algebra</subfield><subfield code="0">(DE-588)4035811-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lineare Algebra</subfield><subfield code="0">(DE-588)4035811-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Vektorrechnung</subfield><subfield code="0">(DE-588)4062471-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-1-107-03356-6</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-1-107-67522-3</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781139520034</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029352159</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139520034</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139520034</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043943188 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:19Z |
institution | BVB |
isbn | 9781139520034 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029352159 |
oclc_num | 967777673 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xii, 444 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Körner, T. W. 1946- Verfasser aut Vectors, pure and applied a general introduction to linear algebra T.W. Körner, Trinity Hall, Cambridge Vectors, Pure & Applied Cambridge Cambridge University Press 2013 1 online resource (xii, 444 pages) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 05 Oct 2015) Machine generated contents note: Introduction; Part I. Familiar Vector Spaces: 1. Gaussian elimination; 2. A little geometry; 3. The algebra of square matrices; 4. The secret life of determinants; 5. Abstract vector spaces; 6. Linear maps from Fn to itself; 7. Distance preserving linear maps; 8. Diagonalisation for orthonormal bases; 9. Cartesian tensors; 10. More on tensors; Part II. General Vector Spaces: 11. Spaces of linear maps; 12. Polynomials in L(U,U); 13. Vector spaces without distances; 14. Vector spaces with distances; 15. More distances; 16. Quadratic forms and their relatives; Bibliography; Index Many books in linear algebra focus purely on getting students through exams, but this text explains both the how and the why of linear algebra and enables students to begin thinking like mathematicians. The author demonstrates how different topics (geometry, abstract algebra, numerical analysis, physics) make use of vectors in different ways and how these ways are connected, preparing students for further work in these areas. The book is packed with hundreds of exercises ranging from the routine to the challenging. Sketch solutions of the easier exercises are available online Vector algebra Algebras, Linear Vektorrechnung (DE-588)4062471-7 gnd rswk-swf Lineare Algebra (DE-588)4035811-2 gnd rswk-swf Lineare Algebra (DE-588)4035811-2 s Vektorrechnung (DE-588)4062471-7 s 1\p DE-604 Erscheint auch als Druckausgabe 978-1-107-03356-6 Erscheint auch als Druckausgabe 978-1-107-67522-3 https://doi.org/10.1017/CBO9781139520034 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Körner, T. W. 1946- Vectors, pure and applied a general introduction to linear algebra Machine generated contents note: Introduction; Part I. Familiar Vector Spaces: 1. Gaussian elimination; 2. A little geometry; 3. The algebra of square matrices; 4. The secret life of determinants; 5. Abstract vector spaces; 6. Linear maps from Fn to itself; 7. Distance preserving linear maps; 8. Diagonalisation for orthonormal bases; 9. Cartesian tensors; 10. More on tensors; Part II. General Vector Spaces: 11. Spaces of linear maps; 12. Polynomials in L(U,U); 13. Vector spaces without distances; 14. Vector spaces with distances; 15. More distances; 16. Quadratic forms and their relatives; Bibliography; Index Vector algebra Algebras, Linear Vektorrechnung (DE-588)4062471-7 gnd Lineare Algebra (DE-588)4035811-2 gnd |
subject_GND | (DE-588)4062471-7 (DE-588)4035811-2 |
title | Vectors, pure and applied a general introduction to linear algebra |
title_alt | Vectors, Pure & Applied |
title_auth | Vectors, pure and applied a general introduction to linear algebra |
title_exact_search | Vectors, pure and applied a general introduction to linear algebra |
title_full | Vectors, pure and applied a general introduction to linear algebra T.W. Körner, Trinity Hall, Cambridge |
title_fullStr | Vectors, pure and applied a general introduction to linear algebra T.W. Körner, Trinity Hall, Cambridge |
title_full_unstemmed | Vectors, pure and applied a general introduction to linear algebra T.W. Körner, Trinity Hall, Cambridge |
title_short | Vectors, pure and applied |
title_sort | vectors pure and applied a general introduction to linear algebra |
title_sub | a general introduction to linear algebra |
topic | Vector algebra Algebras, Linear Vektorrechnung (DE-588)4062471-7 gnd Lineare Algebra (DE-588)4035811-2 gnd |
topic_facet | Vector algebra Algebras, Linear Vektorrechnung Lineare Algebra |
url | https://doi.org/10.1017/CBO9781139520034 |
work_keys_str_mv | AT kornertw vectorspureandappliedageneralintroductiontolinearalgebra AT kornertw vectorspureapplied |