Introduction to finite fields and their applications:
The theory of finite fields is a branch of modern algebra that has come to the fore in recent years because of its diverse applications in such areas as combinatorics, coding theory, cryptology and the mathematical study of switching circuits. The first part of this updated edition presents an intro...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1994
|
Ausgabe: | Second edition |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBY01 URL des Erstveröffentlichers |
Zusammenfassung: | The theory of finite fields is a branch of modern algebra that has come to the fore in recent years because of its diverse applications in such areas as combinatorics, coding theory, cryptology and the mathematical study of switching circuits. The first part of this updated edition presents an introduction to this theory, emphasising those aspects that are relevant for application. The second part is devoted to a discussion of the most important applications of finite fields, especially to information theory, algebraic coding theory and cryptology. There is also a chapter on applications within mathematics, such as finite geometries, combinatorics and pseudo-random sequences. The book is meant to be used as a textbook: worked examples and copious exercises that range from the routine, to those giving alternative proofs of key theorems, to extensions of material covered in the text, are provided throughout. It will appeal to advanced undergraduates and graduate students taking courses on topics in algebra, whether they have backgrounds in mathematics, electrical engineering or computer science. Non-specialists will also find this a readily accessible introduction to an active and increasingly important subject |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xi, 416 pages) |
ISBN: | 9781139172769 |
DOI: | 10.1017/CBO9781139172769 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043943184 | ||
003 | DE-604 | ||
005 | 20240402 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1994 |||| o||u| ||||||eng d | ||
020 | |a 9781139172769 |c Online |9 978-1-139-17276-9 | ||
024 | 7 | |a 10.1017/CBO9781139172769 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781139172769 | ||
035 | |a (OCoLC)967602046 | ||
035 | |a (DE-599)BVBBV043943184 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-706 | ||
082 | 0 | |a 512/.3 |2 20 | |
084 | |a SK 230 |0 (DE-625)143225: |2 rvk | ||
100 | 1 | |a Lidl, Rudolf |e Verfasser |4 aut | |
245 | 1 | 0 | |a Introduction to finite fields and their applications |c Rudolf Lidl, Harald Niederreiter |
246 | 1 | 3 | |a Introduction to Finite Fields & their Applications |
250 | |a Second edition | ||
264 | 1 | |a Cambridge |b Cambridge University Press |c 1994 | |
300 | |a 1 online resource (xi, 416 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a The theory of finite fields is a branch of modern algebra that has come to the fore in recent years because of its diverse applications in such areas as combinatorics, coding theory, cryptology and the mathematical study of switching circuits. The first part of this updated edition presents an introduction to this theory, emphasising those aspects that are relevant for application. The second part is devoted to a discussion of the most important applications of finite fields, especially to information theory, algebraic coding theory and cryptology. There is also a chapter on applications within mathematics, such as finite geometries, combinatorics and pseudo-random sequences. The book is meant to be used as a textbook: worked examples and copious exercises that range from the routine, to those giving alternative proofs of key theorems, to extensions of material covered in the text, are provided throughout. It will appeal to advanced undergraduates and graduate students taking courses on topics in algebra, whether they have backgrounds in mathematics, electrical engineering or computer science. Non-specialists will also find this a readily accessible introduction to an active and increasingly important subject | ||
650 | 4 | |a Finite fields (Algebra) | |
650 | 0 | 7 | |a Galois-Feld |0 (DE-588)4155896-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Galois-Feld |0 (DE-588)4155896-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Niederreiter, Harald |d 1944- |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-46094-1 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781139172769 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029352155 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9781139172769 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781139172769 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781139172769 |l UBY01 |p ZDB-20-CBO |q UBY_PDA_CBO_Kauf_24 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176886856679424 |
---|---|
any_adam_object | |
author | Lidl, Rudolf |
author_facet | Lidl, Rudolf |
author_role | aut |
author_sort | Lidl, Rudolf |
author_variant | r l rl |
building | Verbundindex |
bvnumber | BV043943184 |
classification_rvk | SK 230 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781139172769 (OCoLC)967602046 (DE-599)BVBBV043943184 |
dewey-full | 512/.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.3 |
dewey-search | 512/.3 |
dewey-sort | 3512 13 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9781139172769 |
edition | Second edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03243nmm a2200493zc 4500</leader><controlfield tag="001">BV043943184</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240402 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1994 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139172769</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-139-17276-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781139172769</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781139172769</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967602046</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043943184</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.3</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 230</subfield><subfield code="0">(DE-625)143225:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lidl, Rudolf</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to finite fields and their applications</subfield><subfield code="c">Rudolf Lidl, Harald Niederreiter</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Introduction to Finite Fields & their Applications</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xi, 416 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The theory of finite fields is a branch of modern algebra that has come to the fore in recent years because of its diverse applications in such areas as combinatorics, coding theory, cryptology and the mathematical study of switching circuits. The first part of this updated edition presents an introduction to this theory, emphasising those aspects that are relevant for application. The second part is devoted to a discussion of the most important applications of finite fields, especially to information theory, algebraic coding theory and cryptology. There is also a chapter on applications within mathematics, such as finite geometries, combinatorics and pseudo-random sequences. The book is meant to be used as a textbook: worked examples and copious exercises that range from the routine, to those giving alternative proofs of key theorems, to extensions of material covered in the text, are provided throughout. It will appeal to advanced undergraduates and graduate students taking courses on topics in algebra, whether they have backgrounds in mathematics, electrical engineering or computer science. Non-specialists will also find this a readily accessible introduction to an active and increasingly important subject</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite fields (Algebra)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Galois-Feld</subfield><subfield code="0">(DE-588)4155896-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Galois-Feld</subfield><subfield code="0">(DE-588)4155896-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Niederreiter, Harald</subfield><subfield code="d">1944-</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-46094-1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781139172769</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029352155</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139172769</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139172769</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139172769</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBY_PDA_CBO_Kauf_24</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043943184 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:19Z |
institution | BVB |
isbn | 9781139172769 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029352155 |
oclc_num | 967602046 |
open_access_boolean | |
owner | DE-12 DE-92 DE-706 |
owner_facet | DE-12 DE-92 DE-706 |
physical | 1 online resource (xi, 416 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBY_PDA_CBO_Kauf_24 |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Lidl, Rudolf Verfasser aut Introduction to finite fields and their applications Rudolf Lidl, Harald Niederreiter Introduction to Finite Fields & their Applications Second edition Cambridge Cambridge University Press 1994 1 online resource (xi, 416 pages) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 05 Oct 2015) The theory of finite fields is a branch of modern algebra that has come to the fore in recent years because of its diverse applications in such areas as combinatorics, coding theory, cryptology and the mathematical study of switching circuits. The first part of this updated edition presents an introduction to this theory, emphasising those aspects that are relevant for application. The second part is devoted to a discussion of the most important applications of finite fields, especially to information theory, algebraic coding theory and cryptology. There is also a chapter on applications within mathematics, such as finite geometries, combinatorics and pseudo-random sequences. The book is meant to be used as a textbook: worked examples and copious exercises that range from the routine, to those giving alternative proofs of key theorems, to extensions of material covered in the text, are provided throughout. It will appeal to advanced undergraduates and graduate students taking courses on topics in algebra, whether they have backgrounds in mathematics, electrical engineering or computer science. Non-specialists will also find this a readily accessible introduction to an active and increasingly important subject Finite fields (Algebra) Galois-Feld (DE-588)4155896-0 gnd rswk-swf Galois-Feld (DE-588)4155896-0 s 1\p DE-604 Niederreiter, Harald 1944- Sonstige oth Erscheint auch als Druckausgabe 978-0-521-46094-1 https://doi.org/10.1017/CBO9781139172769 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Lidl, Rudolf Introduction to finite fields and their applications Finite fields (Algebra) Galois-Feld (DE-588)4155896-0 gnd |
subject_GND | (DE-588)4155896-0 |
title | Introduction to finite fields and their applications |
title_alt | Introduction to Finite Fields & their Applications |
title_auth | Introduction to finite fields and their applications |
title_exact_search | Introduction to finite fields and their applications |
title_full | Introduction to finite fields and their applications Rudolf Lidl, Harald Niederreiter |
title_fullStr | Introduction to finite fields and their applications Rudolf Lidl, Harald Niederreiter |
title_full_unstemmed | Introduction to finite fields and their applications Rudolf Lidl, Harald Niederreiter |
title_short | Introduction to finite fields and their applications |
title_sort | introduction to finite fields and their applications |
topic | Finite fields (Algebra) Galois-Feld (DE-588)4155896-0 gnd |
topic_facet | Finite fields (Algebra) Galois-Feld |
url | https://doi.org/10.1017/CBO9781139172769 |
work_keys_str_mv | AT lidlrudolf introductiontofinitefieldsandtheirapplications AT niederreiterharald introductiontofinitefieldsandtheirapplications AT lidlrudolf introductiontofinitefieldstheirapplications AT niederreiterharald introductiontofinitefieldstheirapplications |