Geometry from a differentiable viewpoint:
Differential geometry has developed in many directions since its beginnings with Euler and Gauss. This often poses a problem for undergraduates: which direction should be followed? What do these ideas have to do with geometry? This book is designed to make differential geometry an approachable subje...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1994
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | Differential geometry has developed in many directions since its beginnings with Euler and Gauss. This often poses a problem for undergraduates: which direction should be followed? What do these ideas have to do with geometry? This book is designed to make differential geometry an approachable subject for advanced undergraduates. The text serves as both an introduction to the classical differential geometry of curves and surfaces and as a history of the non-Euclidean plane. The book begins with the theorems of non-Euclidean geometry, then introduces the methods of differential geometry and develops them towards the goal of constructing models of the hyperbolic plane. Interesting diversions are offered, such as Huygens' pendulum clock and mathematical cartography; however, the focus of the book is on the models of non-Euclidean geometry and the modern ideas of abstract surfaces and manifolds. Although the main use of this text is as an advanced undergraduate course book, the historical aspect of the text should appeal to most mathematicians |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xii, 308 pages) |
ISBN: | 9781139173926 |
DOI: | 10.1017/CBO9781139173926 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043943175 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1994 |||| o||u| ||||||eng d | ||
020 | |a 9781139173926 |c Online |9 978-1-139-17392-6 | ||
024 | 7 | |a 10.1017/CBO9781139173926 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781139173926 | ||
035 | |a (OCoLC)967686569 | ||
035 | |a (DE-599)BVBBV043943175 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 516.3/6 |2 20 | |
084 | |a SK 370 |0 (DE-625)143234: |2 rvk | ||
100 | 1 | |a McCleary, John |d 1952- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Geometry from a differentiable viewpoint |c John McCleary |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1994 | |
300 | |a 1 online resource (xii, 308 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a Differential geometry has developed in many directions since its beginnings with Euler and Gauss. This often poses a problem for undergraduates: which direction should be followed? What do these ideas have to do with geometry? This book is designed to make differential geometry an approachable subject for advanced undergraduates. The text serves as both an introduction to the classical differential geometry of curves and surfaces and as a history of the non-Euclidean plane. The book begins with the theorems of non-Euclidean geometry, then introduces the methods of differential geometry and develops them towards the goal of constructing models of the hyperbolic plane. Interesting diversions are offered, such as Huygens' pendulum clock and mathematical cartography; however, the focus of the book is on the models of non-Euclidean geometry and the modern ideas of abstract surfaces and manifolds. Although the main use of this text is as an advanced undergraduate course book, the historical aspect of the text should appeal to most mathematicians | ||
650 | 4 | |a Geometry, Differential | |
650 | 0 | 7 | |a Differentialgeometrie |0 (DE-588)4012248-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Differentialgeometrie |0 (DE-588)4012248-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-41430-2 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-42480-6 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781139173926 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029352146 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9781139173926 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781139173926 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176886840950784 |
---|---|
any_adam_object | |
author | McCleary, John 1952- |
author_facet | McCleary, John 1952- |
author_role | aut |
author_sort | McCleary, John 1952- |
author_variant | j m jm |
building | Verbundindex |
bvnumber | BV043943175 |
classification_rvk | SK 370 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781139173926 (OCoLC)967686569 (DE-599)BVBBV043943175 |
dewey-full | 516.3/6 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.3/6 |
dewey-search | 516.3/6 |
dewey-sort | 3516.3 16 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9781139173926 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02857nmm a2200457zc 4500</leader><controlfield tag="001">BV043943175</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1994 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139173926</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-139-17392-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781139173926</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781139173926</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967686569</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043943175</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.3/6</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">McCleary, John</subfield><subfield code="d">1952-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometry from a differentiable viewpoint</subfield><subfield code="c">John McCleary</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xii, 308 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Differential geometry has developed in many directions since its beginnings with Euler and Gauss. This often poses a problem for undergraduates: which direction should be followed? What do these ideas have to do with geometry? This book is designed to make differential geometry an approachable subject for advanced undergraduates. The text serves as both an introduction to the classical differential geometry of curves and surfaces and as a history of the non-Euclidean plane. The book begins with the theorems of non-Euclidean geometry, then introduces the methods of differential geometry and develops them towards the goal of constructing models of the hyperbolic plane. Interesting diversions are offered, such as Huygens' pendulum clock and mathematical cartography; however, the focus of the book is on the models of non-Euclidean geometry and the modern ideas of abstract surfaces and manifolds. Although the main use of this text is as an advanced undergraduate course book, the historical aspect of the text should appeal to most mathematicians</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Differential</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialgeometrie</subfield><subfield code="0">(DE-588)4012248-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Differentialgeometrie</subfield><subfield code="0">(DE-588)4012248-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-41430-2</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-42480-6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781139173926</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029352146</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139173926</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139173926</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043943175 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:19Z |
institution | BVB |
isbn | 9781139173926 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029352146 |
oclc_num | 967686569 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xii, 308 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | Cambridge University Press |
record_format | marc |
spelling | McCleary, John 1952- Verfasser aut Geometry from a differentiable viewpoint John McCleary Cambridge Cambridge University Press 1994 1 online resource (xii, 308 pages) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 05 Oct 2015) Differential geometry has developed in many directions since its beginnings with Euler and Gauss. This often poses a problem for undergraduates: which direction should be followed? What do these ideas have to do with geometry? This book is designed to make differential geometry an approachable subject for advanced undergraduates. The text serves as both an introduction to the classical differential geometry of curves and surfaces and as a history of the non-Euclidean plane. The book begins with the theorems of non-Euclidean geometry, then introduces the methods of differential geometry and develops them towards the goal of constructing models of the hyperbolic plane. Interesting diversions are offered, such as Huygens' pendulum clock and mathematical cartography; however, the focus of the book is on the models of non-Euclidean geometry and the modern ideas of abstract surfaces and manifolds. Although the main use of this text is as an advanced undergraduate course book, the historical aspect of the text should appeal to most mathematicians Geometry, Differential Differentialgeometrie (DE-588)4012248-7 gnd rswk-swf Differentialgeometrie (DE-588)4012248-7 s 1\p DE-604 Erscheint auch als Druckausgabe 978-0-521-41430-2 Erscheint auch als Druckausgabe 978-0-521-42480-6 https://doi.org/10.1017/CBO9781139173926 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | McCleary, John 1952- Geometry from a differentiable viewpoint Geometry, Differential Differentialgeometrie (DE-588)4012248-7 gnd |
subject_GND | (DE-588)4012248-7 |
title | Geometry from a differentiable viewpoint |
title_auth | Geometry from a differentiable viewpoint |
title_exact_search | Geometry from a differentiable viewpoint |
title_full | Geometry from a differentiable viewpoint John McCleary |
title_fullStr | Geometry from a differentiable viewpoint John McCleary |
title_full_unstemmed | Geometry from a differentiable viewpoint John McCleary |
title_short | Geometry from a differentiable viewpoint |
title_sort | geometry from a differentiable viewpoint |
topic | Geometry, Differential Differentialgeometrie (DE-588)4012248-7 gnd |
topic_facet | Geometry, Differential Differentialgeometrie |
url | https://doi.org/10.1017/CBO9781139173926 |
work_keys_str_mv | AT mcclearyjohn geometryfromadifferentiableviewpoint |