Lie groups, physics, and geometry: an introduction for physicists, engineers and chemists
Describing many of the most important aspects of Lie group theory, this book presents the subject in a 'hands on' way. Rather than concentrating on theorems and proofs, the book shows the applications of the material to physical sciences and applied mathematics. Many examples of Lie groups...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2008
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | Describing many of the most important aspects of Lie group theory, this book presents the subject in a 'hands on' way. Rather than concentrating on theorems and proofs, the book shows the applications of the material to physical sciences and applied mathematics. Many examples of Lie groups and Lie algebras are given throughout the text. The relation between Lie group theory and algorithms for solving ordinary differential equations is presented and shown to be analogous to the relation between Galois groups and algorithms for solving polynomial equations. Other chapters are devoted to differential geometry, relativity, electrodynamics, and the hydrogen atom. Problems are given at the end of each chapter so readers can monitor their understanding of the materials. This is a fascinating introduction to Lie groups for graduate and undergraduate students in physics, mathematics and electrical engineering, as well as researchers in these fields |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xi, 319 pages) |
ISBN: | 9780511791390 |
DOI: | 10.1017/CBO9780511791390 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043942934 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2008 |||| o||u| ||||||eng d | ||
020 | |a 9780511791390 |c Online |9 978-0-511-79139-0 | ||
024 | 7 | |a 10.1017/CBO9780511791390 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511791390 | ||
035 | |a (OCoLC)850699205 | ||
035 | |a (DE-599)BVBBV043942934 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 512.482 |2 22 | |
084 | |a SK 340 |0 (DE-625)143232: |2 rvk | ||
100 | 1 | |a Gilmore, Robert |d 1941- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Lie groups, physics, and geometry |b an introduction for physicists, engineers and chemists |c Robert Gilmore |
246 | 1 | 3 | |a Lie Groups, Physics, & Geometry |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2008 | |
300 | |a 1 online resource (xi, 319 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a Lie groups -- Matrix groups -- Lie algebras -- Matrix algebras -- Operator algebras -- EXPonentiation -- Structure theory for Lie algebras -- Structure theory for simple Lie algebras -- Root spaces and Dynkin diagrams -- Real forms -- Riemannian symmetric spaces -- Contraction -- Hydrogenic atoms -- Maxwell's equations -- Lie groups and differential equations | |
520 | |a Describing many of the most important aspects of Lie group theory, this book presents the subject in a 'hands on' way. Rather than concentrating on theorems and proofs, the book shows the applications of the material to physical sciences and applied mathematics. Many examples of Lie groups and Lie algebras are given throughout the text. The relation between Lie group theory and algorithms for solving ordinary differential equations is presented and shown to be analogous to the relation between Galois groups and algorithms for solving polynomial equations. Other chapters are devoted to differential geometry, relativity, electrodynamics, and the hydrogen atom. Problems are given at the end of each chapter so readers can monitor their understanding of the materials. This is a fascinating introduction to Lie groups for graduate and undergraduate students in physics, mathematics and electrical engineering, as well as researchers in these fields | ||
650 | 4 | |a Lie groups | |
650 | 4 | |a Group theory | |
650 | 0 | 7 | |a Lie-Gruppe |0 (DE-588)4035695-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lie-Algebra |0 (DE-588)4130355-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lie-Algebra |0 (DE-588)4130355-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Lie-Gruppe |0 (DE-588)4035695-4 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-88400-6 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511791390 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029351904 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511791390 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511791390 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176886351265792 |
---|---|
any_adam_object | |
author | Gilmore, Robert 1941- |
author_facet | Gilmore, Robert 1941- |
author_role | aut |
author_sort | Gilmore, Robert 1941- |
author_variant | r g rg |
building | Verbundindex |
bvnumber | BV043942934 |
classification_rvk | SK 340 |
collection | ZDB-20-CBO |
contents | Lie groups -- Matrix groups -- Lie algebras -- Matrix algebras -- Operator algebras -- EXPonentiation -- Structure theory for Lie algebras -- Structure theory for simple Lie algebras -- Root spaces and Dynkin diagrams -- Real forms -- Riemannian symmetric spaces -- Contraction -- Hydrogenic atoms -- Maxwell's equations -- Lie groups and differential equations |
ctrlnum | (ZDB-20-CBO)CR9780511791390 (OCoLC)850699205 (DE-599)BVBBV043942934 |
dewey-full | 512.482 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.482 |
dewey-search | 512.482 |
dewey-sort | 3512.482 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511791390 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03384nmm a2200529zc 4500</leader><controlfield tag="001">BV043942934</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2008 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511791390</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-79139-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511791390</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511791390</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)850699205</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942934</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.482</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gilmore, Robert</subfield><subfield code="d">1941-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lie groups, physics, and geometry</subfield><subfield code="b">an introduction for physicists, engineers and chemists</subfield><subfield code="c">Robert Gilmore</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Lie Groups, Physics, & Geometry</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xi, 319 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Lie groups -- Matrix groups -- Lie algebras -- Matrix algebras -- Operator algebras -- EXPonentiation -- Structure theory for Lie algebras -- Structure theory for simple Lie algebras -- Root spaces and Dynkin diagrams -- Real forms -- Riemannian symmetric spaces -- Contraction -- Hydrogenic atoms -- Maxwell's equations -- Lie groups and differential equations</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Describing many of the most important aspects of Lie group theory, this book presents the subject in a 'hands on' way. Rather than concentrating on theorems and proofs, the book shows the applications of the material to physical sciences and applied mathematics. Many examples of Lie groups and Lie algebras are given throughout the text. The relation between Lie group theory and algorithms for solving ordinary differential equations is presented and shown to be analogous to the relation between Galois groups and algorithms for solving polynomial equations. Other chapters are devoted to differential geometry, relativity, electrodynamics, and the hydrogen atom. Problems are given at the end of each chapter so readers can monitor their understanding of the materials. This is a fascinating introduction to Lie groups for graduate and undergraduate students in physics, mathematics and electrical engineering, as well as researchers in these fields</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-88400-6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511791390</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029351904</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511791390</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511791390</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043942934 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:18Z |
institution | BVB |
isbn | 9780511791390 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029351904 |
oclc_num | 850699205 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xi, 319 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Gilmore, Robert 1941- Verfasser aut Lie groups, physics, and geometry an introduction for physicists, engineers and chemists Robert Gilmore Lie Groups, Physics, & Geometry Cambridge Cambridge University Press 2008 1 online resource (xi, 319 pages) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 05 Oct 2015) Lie groups -- Matrix groups -- Lie algebras -- Matrix algebras -- Operator algebras -- EXPonentiation -- Structure theory for Lie algebras -- Structure theory for simple Lie algebras -- Root spaces and Dynkin diagrams -- Real forms -- Riemannian symmetric spaces -- Contraction -- Hydrogenic atoms -- Maxwell's equations -- Lie groups and differential equations Describing many of the most important aspects of Lie group theory, this book presents the subject in a 'hands on' way. Rather than concentrating on theorems and proofs, the book shows the applications of the material to physical sciences and applied mathematics. Many examples of Lie groups and Lie algebras are given throughout the text. The relation between Lie group theory and algorithms for solving ordinary differential equations is presented and shown to be analogous to the relation between Galois groups and algorithms for solving polynomial equations. Other chapters are devoted to differential geometry, relativity, electrodynamics, and the hydrogen atom. Problems are given at the end of each chapter so readers can monitor their understanding of the materials. This is a fascinating introduction to Lie groups for graduate and undergraduate students in physics, mathematics and electrical engineering, as well as researchers in these fields Lie groups Group theory Lie-Gruppe (DE-588)4035695-4 gnd rswk-swf Lie-Algebra (DE-588)4130355-6 gnd rswk-swf Lie-Algebra (DE-588)4130355-6 s 1\p DE-604 Lie-Gruppe (DE-588)4035695-4 s 2\p DE-604 Erscheint auch als Druckausgabe 978-0-521-88400-6 https://doi.org/10.1017/CBO9780511791390 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Gilmore, Robert 1941- Lie groups, physics, and geometry an introduction for physicists, engineers and chemists Lie groups -- Matrix groups -- Lie algebras -- Matrix algebras -- Operator algebras -- EXPonentiation -- Structure theory for Lie algebras -- Structure theory for simple Lie algebras -- Root spaces and Dynkin diagrams -- Real forms -- Riemannian symmetric spaces -- Contraction -- Hydrogenic atoms -- Maxwell's equations -- Lie groups and differential equations Lie groups Group theory Lie-Gruppe (DE-588)4035695-4 gnd Lie-Algebra (DE-588)4130355-6 gnd |
subject_GND | (DE-588)4035695-4 (DE-588)4130355-6 |
title | Lie groups, physics, and geometry an introduction for physicists, engineers and chemists |
title_alt | Lie Groups, Physics, & Geometry |
title_auth | Lie groups, physics, and geometry an introduction for physicists, engineers and chemists |
title_exact_search | Lie groups, physics, and geometry an introduction for physicists, engineers and chemists |
title_full | Lie groups, physics, and geometry an introduction for physicists, engineers and chemists Robert Gilmore |
title_fullStr | Lie groups, physics, and geometry an introduction for physicists, engineers and chemists Robert Gilmore |
title_full_unstemmed | Lie groups, physics, and geometry an introduction for physicists, engineers and chemists Robert Gilmore |
title_short | Lie groups, physics, and geometry |
title_sort | lie groups physics and geometry an introduction for physicists engineers and chemists |
title_sub | an introduction for physicists, engineers and chemists |
topic | Lie groups Group theory Lie-Gruppe (DE-588)4035695-4 gnd Lie-Algebra (DE-588)4130355-6 gnd |
topic_facet | Lie groups Group theory Lie-Gruppe Lie-Algebra |
url | https://doi.org/10.1017/CBO9780511791390 |
work_keys_str_mv | AT gilmorerobert liegroupsphysicsandgeometryanintroductionforphysicistsengineersandchemists AT gilmorerobert liegroupsphysicsgeometry |